Thermally Evaporated Iron (Oxide) on an Alumina Barrier Layer, by XPS

We report the XPS characterization of a thermally evaporated iron thin film (6 nm) deposited on an Si/SiO2/Al2O3 substrate using Al Kα x-rays. An XPS survey spectrum, Fe 2p and O 1s narrow scans, and a valence band scan are shown.

[1]  Supriya S. Kanyal,et al.  Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS , 2013 .

[2]  Supriya S. Kanyal,et al.  Silicon (100)/SiO2 by XPS , 2013 .

[3]  Supriya S. Kanyal,et al.  Thermally Annealed Iron (Oxide) Thin Film on an Alumina Barrier Layer, by XPS , 2013 .

[4]  Supriya S. Kanyal,et al.  Multi‐instrument characterization of the surfaces and materials in microfabricated, carbon nanotube‐templated thin layer chromatography plates. An analogy to ‘The Blind Men and the Elephant’ , 2013 .

[5]  Robert C. Davis,et al.  Ozone priming of patterned carbon nanotube forests for subsequent atomic layer deposition-like deposition of SiO2 for the preparation of microfabricated thin layer chromatography plates , 2013 .

[6]  Robert C. Davis,et al.  Effects of catalyst thickness on the fabrication and performance of carbon nanotube-templated thin layer chromatography plates , 2013 .

[7]  Robert C. Davis,et al.  Stable, microfabricated thin layer chromatography plates without volume distortion on patterned, carbon and Al₂O₃-primed carbon nanotube forests. , 2012, Journal of chromatography. A.

[8]  M. Xue,et al.  Surface structural evolution in iron oxide thin films. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[9]  M. Linford,et al.  Carbon‐Nanotube‐Templated Microfabrication of Porous Silicon‐Carbon Materials with Application to Chemical Separations , 2010 .

[10]  A. Domb,et al.  Preparation and characterization of n-alkanoic acid self-assembled monolayers adsorbed on 316L stainless steel. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[11]  P. Sherwood,et al.  Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides, with spectral interpretation by cluster and band structure calculations , 2002, Analytical and bioanalytical chemistry.

[12]  G. Sawatzky,et al.  In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy , 1999 .

[13]  R. Zimmermann,et al.  Theoretical and experimental studies on the electronic structure of M2O3 (M = Ti, V, Cr, Mn, Fe) compounds by systematic analysis of high-energy spectroscopy , 1997 .

[14]  G. Sawatzky,et al.  In situ RHEED and XPS studies of epitaxial thin α-Fe2O3(0001) films on sapphire , 1996 .

[15]  A. Kotani,et al.  Interatomic and Intra-Atomic Configuration Interactions in Core-Level X-Ray Photoemission Spectra of Late Transition-Metal Compounds , 1992 .

[16]  Saitoh,et al.  Electronic structure of 3d-transition-metal compounds by analysis of the 2p core-level photoemission spectra. , 1992, Physical review. B, Condensed matter.

[17]  R. C. Kainthla,et al.  The passive film on iron: an ellipsometric-spectroscopic study , 1987 .

[18]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .