Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling

The subject of this work is the physical characterization of asteroids, focusing on the thermal inertia of near-Earth asteroids (NEAs). Thermal inertia governs the Yarkovsky effect, a non-gravitational force which significantly alters the orbits of asteroids up to \sim 20 km in diameter. Yet, very little has previously been known about the thermal inertia of small asteroids including NEAs. Observational and theoretical work is reported. The thermal emission of asteroids has been observed in the mid-infrared (5-35 {\mu}m) wavelength range using the Spitzer Space Telescope and the 3.0m IRTF. A detailed thermophysical model (TPM) has been developed and extensively tested; this is the first detailed TPM shown to be applicable to NEA data. Our main result is the determination of the thermal inertia of 5 NEAs, increasing the total number of NEAs with measured thermal inertia to 6. For two of our targets, previously available estimates are refined. Our results allow the first determination of the typical thermal inertia of NEAs, which is around 300 J s^{-1/2} K^{-1} m^{-2}, larger than the typical thermal inertia of large main-belt asteroids (MBAs) by more than an order of magnitude. In particular, thermal inertia appears to increase with decreasing asteroid diameter. Our results have been used by colleagues to estimate the size dependence of the Yarkovsky effect, thus explaining the apparent difference in the size-frequency distribution of NEAs and similarly sized MBAs. Thermal inertia is a very sensitive indicator for the presence or absence of particulate material on the surface. Our results indicate that even sub-km asteroids are covered with coarse regolith.

[1]  R. W. Shorthill,et al.  The sunlit lunar surface , 1972 .

[2]  David Jewitt,et al.  CCD spectra of asteroids. II - The Trojans as spectral analogs of cometary nuclei , 1990 .

[3]  Thomas J. Ahrens,et al.  Rock physics & phase relations : a handbook of physical constants , 1995 .

[4]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[5]  Daniel D. Durda,et al.  Asteroids Do Have Satellites , 2002 .

[6]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. III. IRREGULAR SHAPES AND ALBEDO VARIEGATIONS , 1997 .

[7]  U. S. Naval Asteroid Masses and Densities , 2002 .

[8]  G. Rieke,et al.  Radiometry and surface properties of Apollo, Amor, and Aten asteroids , 1979 .

[9]  B. Hapke,et al.  Asteroid Space Weathering and Regolith Evolution , 2002 .

[10]  M. Shepard,et al.  Spectroscopy of X-Type Asteroids , 2004 .

[11]  G. Hahn,et al.  Physical limits of solar collectors in deflecting Earth-threatening asteroids , 2006 .

[12]  M. Delbo’ The nature of near-earth asteroids from the study of their thermal infrared emission , 2004 .

[13]  Stephanie C. Werner,et al.  Evidence on the Origin of Phobos’ Parallel Grooves from HRSC Mars Express , 2006 .

[14]  Helen A. Chou,et al.  The JPL deep-well mid-infrared array camera , 1994 .

[15]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[16]  E. Standish,et al.  Asteroid 1950 DA's Encounter with Earth in 2880: Physical Limits of Collision Probability Prediction , 2002, Science.

[17]  Clark R. Chapman,et al.  SPACE WEATHERING OF ASTEROID SURFACES , 2004 .

[18]  C. Beichman,et al.  Infrared Astronomical Satellite (IRAS) catalogs and atlases , 1988 .

[19]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[20]  M. Burgdorf,et al.  Fundamental thermal emission parameters of main-belt asteroids derived from ISO , 1999 .

[21]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[22]  I. Shapiro,et al.  Mainbelt Asteroids: Results of Arecibo and Goldstone Radar Observations of 37 Objects during 1980-1995 , 1998 .

[23]  Alain Doressoundiram,et al.  Spectroscopic Properties of Asteroid Families , 2002 .

[24]  D. Scheeres The dynamical evolution of uniformly rotating asteroids subject to YORP , 2006 .

[26]  L. Lebofsky,et al.  Thermal properties of 433 Eros , 1979 .

[27]  A. Landolt,et al.  UBV photoelectric sequences in the celestial equatorial Selected Areas 92-115 , 1973 .

[28]  G. Kargl,et al.  Laboratory simulation experiments on the solid-state greenhouse effect in planetary ices , 2006 .

[29]  T. G. Muller,et al.  Asteroids as far-infrared photometric standards for ISOPHOT , 1998 .

[30]  Amanda Kathryn Mainzer,et al.  NEOCam: The Near-Earth Object Camera , 2006 .

[31]  E. Kührt,et al.  Theoretical interpretation of infrared measurements at Deimos in the framework of crater radiation , 1990 .

[32]  D. Vokrouhlický,et al.  The YORP effect with finite thermal conductivity , 2004 .

[33]  D. Vokrouhlický,et al.  New Candidates for Recent Asteroid Breakups , 2006 .

[34]  Erzsébet Merényi,et al.  Classification of asteroid spectra using a neural network , 1994 .

[35]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[36]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[37]  Stephan D. Price,et al.  The Midcourse Space Experiment Infrared Minor Planet Survey , 2002 .

[38]  Richard P. Binzel,et al.  Keck observations of near-Earth asteroids in the thermal infrared , 2003 .

[39]  D. Buhl,et al.  Anomalous cooling of a cratered lunar surface , 1968 .

[40]  H. Boehnhardt,et al.  Thermal observations of MUSES-C mission target ( 25143 ) 1998 SF 36 ? , 2022 .

[41]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[42]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[43]  Timothy H. McConnochie,et al.  E‐type asteroid spectroscopy and compositional modeling , 2004 .

[44]  Daniel J. Scheeres,et al.  Radar observations and a physical model of Asteroid 1580 Betulia , 2007 .

[45]  P. Geissler,et al.  The Fate of Asteroid Ejecta , 2002 .

[46]  Erik Asphaug,et al.  Asteroid Interiors , 2002 .

[47]  Joseph L. Hora,et al.  MIRSI: a Mid-InfraRed Spectrometer and Imager , 2000, SPIE Astronomical Telescopes + Instrumentation.

[48]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[49]  R. Siebenmorgen,et al.  Thermal infrared observations of near-Earth asteroid 2002 NY40 , 2004, astro-ph/0406238.

[50]  S. Keihm,et al.  The Revised Lunar Heat Flow Values , 1976 .

[51]  I. Belskaya,et al.  Opposition Effect of Asteroids , 2000 .

[52]  Karl-Heinrich Grote,et al.  Taschenbuch für den Maschinenbau. Dubbel , 2001 .

[53]  Bruce M. Jakosky,et al.  Infrared observations of Phobos and Deimos from Viking , 1982 .

[54]  D. J. Tholen,et al.  Asteroid taxonomic classifications , 1989 .

[55]  F. Marzari,et al.  Origin and evolution of Trojan asteroids , 2002 .

[56]  Olivier Guyon,et al.  S/2001 (617) 1 , 2001 .

[57]  Interpretation of the KRFM-infrared measurements of phobos , 1992 .

[58]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. I. EFFECTS OF SHAPE, HEAT CONDUCTION AND BEAMING , 1996 .

[59]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[60]  D. Matson,et al.  Radiometry of near-earth asteroids. , 1989, The Astronomical journal.

[61]  M. Davidson,et al.  Earth, Moon and Planets , 1947, Nature.

[62]  Alan W. Harris,et al.  The Rotation Rates of Very Small Asteroids: Evidence for Rubble-Pile Structure , 1996 .

[63]  F. Marzari,et al.  Visible spectroscopic and photometric survey of L5 Trojans: investigation of dynamical families , 2004 .

[64]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[65]  C. Barbieri,et al.  Visible spectral properties of asteroid 21 Lutetia, target of Rosetta Mission , 2004 .

[66]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[67]  Alessandro Morbidelli,et al.  The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm? , 2002 .

[68]  Steven R. Chesley,et al.  Potential impact detection for Near-Earth asteroids: the case of 99942 Apophis (2004 MN4) , 2005, Proceedings of the International Astronomical Union.

[69]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[70]  P. Weissman,et al.  CCD Photometry of Comet and Asteroid Targets of Spacecraft Missions , 1999 .

[71]  Mikko Kaasalainen,et al.  Shapes and rotational properties of thirty asteroids from photometric data , 2003 .

[72]  John E. Chambers,et al.  Primordial Excitation and Depletion of the Main Belt , 2002 .

[73]  W. Hovis,et al.  Infrared reflectance spectra of igneous rocks, tuffs and red sandstone for 0.5 to 22 microns , 1966 .

[74]  Andrew Scott Rivkin,et al.  The Nature of M-Class Asteroids from 3-μm Observations☆ , 2000 .

[75]  G. Pettengill,et al.  Radar observations of asteroid 1580 Betulia , 1979 .

[76]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[77]  Cesare Barbieri,et al.  Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results☆ , 2004 .

[78]  F. Shelly,et al.  Lincoln Near-Earth Asteroid Program (LINEAR) , 2000 .

[79]  L. Lebofsky,et al.  Radiometry and a thermal modeling of asteroids , 1989 .

[80]  Spacecraft Exploration of Asteroids: The 2001 Perspective , 2002 .

[81]  D. C. Jewitt,et al.  Population and Size Distribution of Small Jovian Trojan Asteroids , 2000, astro-ph/0004117.

[82]  S. Ostro,et al.  Radar observations of asteroid 216 kleopatra , 2000, Science.

[83]  G. Kargl,et al.  Laboratory simulation and theoretical modelling of the solid-state greenhouse effect , 2007 .

[84]  Michael J. Gaffey,et al.  Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids , 1992 .

[85]  H. McSween,et al.  Temperature dependence of specific heat capacity and its effect on asteroid thermal models , 1999 .

[86]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[87]  Giovanni B. Valsecchi,et al.  Dynamical and compositional assessment of near‐Earth object mission targets , 2004 .

[88]  Daniel J. Scheeres,et al.  Radar observations of Itokawa in 2004 and improved shape estimation , 2005 .

[89]  D. Trilling,et al.  Near-Infrared Spectrophotometry of Phobos and Deimos , 2002 .

[90]  M. Kaasalainen,et al.  Acceleration of the rotation of asteroid 1862 Apollo by radiation torques , 2007, Nature.

[91]  Athena Coustenis,et al.  Pluto's Non-isothermal Surface , 2000 .

[92]  D. Vokrouhlick,et al.  An improved model of the seasonal Yarkovsky force for regolith-covered asteroid fragments , 1999 .

[94]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[95]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[96]  I. Gatley,et al.  Thermal response of Iapetus to an eclipse by Saturn's rings , 2005 .

[97]  J. Bell,et al.  Thermal infrared (8-13 μm) spectra of 29 asteroids: The Cornell Mid-Infrared Asteroid Spectroscopy (MIDAS) survey , 2005 .

[98]  Randolph L. Kirk,et al.  Eros: Shape, Topography, and Slope Processes , 2002 .

[99]  D. Rubincam Yarkovsky Thermal Drag on LAGEOS , 1988 .

[100]  Kazuya Yoshida,et al.  Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa , 2006, Science.

[101]  D. Morrison Determination of radii of satellites and asteroids from radiometry and photometry. , 1973 .

[102]  W. Bottke,et al.  Detection of the Yarkovsky effect for main-belt asteroids , 2004 .

[103]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[104]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[105]  A. Harris,et al.  Physical characterization of the potentially hazardous high-albedo Asteroid (33342) 1998 WT24 from thermal-infrared observations , 2007 .

[106]  J. Benkhoff,et al.  Thermal infrared spectroscopy to investigate the composition of mercury – The MERTIS instrument on BepiColombo , 2006 .

[107]  J. Lagerros Thermal physics of asteroids , 1998 .

[108]  Carol A. Raymond,et al.  Dawn mission and operations , 2005, Proceedings of the International Astronomical Union.

[109]  The Near-Earth Objects Follow-Up Program III: 32 Lightcurves for 12 Objects from 1992 and 1995 , 2000 .

[110]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[111]  A. Morbidellia,et al.  The Yarkovsky-driven origin of near-Earth asteroids , 2003 .

[112]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[113]  C. Surace,et al.  The Universe as Seen by ISO , 1999 .

[114]  Photopolarimetry of asteroids , 1989 .

[115]  M. Horányi,et al.  Dust transport in photoelectron layers and the formation of dust ponds on Eros , 2005 .

[116]  K. Volger Haustechnik : Grundlagen, Planung, Ausführung , 1958 .

[117]  D. Richardson,et al.  Binary Minor Planets , 2006 .

[118]  S. Clark,et al.  Handbook of physical constants , 1966 .

[119]  E. Tedesco,et al.  1580 Betulia: An unusual asteroid with an extraordinary lightcurve , 1978 .

[120]  Stephanie C. Werner,et al.  The Near-Earth Asteroid Size–Frequency Distribution: A Snapshot of the Lunar Impactor Size–Frequency Distribution , 2002 .

[121]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[122]  David Trilling,et al.  Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope , 2007 .

[123]  Giovanni B. Valsecchi,et al.  Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids , 2001 .

[124]  K. Holsapple Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61 , 2007 .

[125]  A. Harris,et al.  Physical Characteristics of Near-Earth Asteroids from Thermal Infrared Spectrophotometry☆ , 1999 .

[126]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[127]  A. Fitzsimmons,et al.  Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect , 2007, Science.

[128]  Barucci,et al.  Physical Properties of Trojan and Centaur Asteroids , 2002 .

[129]  R. Brunetto,et al.  Space Weathering in the Main Asteroid Belt: The Big Picture , 2006 .

[130]  C. Chapman Cratering on Asteroids from Galileo and NEAR Shoemaker , 2002 .

[131]  David Vokrouhlický,et al.  The vector alignments of asteroid spins by thermal torques , 2003, Nature.

[132]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[133]  E. al.,et al.  Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa , 2005, astro-ph/0509434.

[134]  Giovanni B. Valsecchi,et al.  Quantifying the Risk Posed by Potential Earth Impacts , 2002 .

[135]  K. Noll Solar System binaries , 2005, Proceedings of the International Astronomical Union.

[136]  A. Fujiwara,et al.  Near-Infrared Observations of MUSES-C Mission Target , 2003 .

[137]  Alan W. Harris,et al.  Size, albedo, and taxonomic type of potential spacecraft target Asteroid (10302) 1989 ML , 2007 .

[138]  B. Buratti,et al.  The Lightcurve and Geometric Albedo of 433 Eros during the 1998 Apparition , 1999 .

[139]  B. Marty,et al.  4. Building of a Habitable Planet , 2006 .

[140]  A. Harris Target Selection for the Don Quijote Mission Near-Earth Object Mission Advisory Panel , 2005 .

[141]  G. Rieke,et al.  The High-Albedo Kuiper Belt Object (55565) 2002 AW197 , 2005 .

[142]  Marcello Fulchignoni,et al.  An analysis of the amplitude-phase relationship among asteroids , 1990 .

[143]  D. F. Winter,et al.  Directional characteristics of infrared emission from the moon , 1971 .

[144]  Sanna Kaasalainen,et al.  Photometry and models of eight near-Earth asteroids , 2004 .

[145]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[146]  O. Hansen An explication of the radiometric method for size and albedo determination. [asteroid IR photometry] , 1977 .

[147]  W. Hartmann,et al.  The Comparison of Size-Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate , 2002 .

[148]  R. G. Hutton,et al.  Polarimetric Observations of Small Asteroids: Preliminary Results , 1999 .

[149]  Alessandro Rossi,et al.  Interiors of small bodies: foundations and perspectives , 2003 .

[150]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[151]  D. Tholen,et al.  Lightcurve Analysis of Four New Monolithic Fast-Rotating Asteroids , 2002 .

[152]  L. Jorda,et al.  Properties of the nuclei of Centaurs Chiron and Chariklo , 2004 .

[153]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[154]  J. Terazono,et al.  Detailed Images of Asteroid 25143 Itokawa from Hayabusa , 2006, Science.

[155]  N. Izenberg,et al.  Imaging of Small-Scale Features on 433 Eros from NEAR: Evidence for a Complex Regolith , 2001, Science.

[156]  Jean-Luc Margot,et al.  Direct Detection of the Yarkovsky Effect by Radar Ranging to Asteroid 6489 Golevka , 2003, Science.

[157]  W. Bottke,et al.  Origin and Evolution of Near-Earth Objects , 2002 .

[158]  M. Robinson,et al.  Disk-Integrated Photometry of 433 Eros , 2002 .

[159]  J. Spencer THE SURFACES OF EUROPA, GANYMEDE, AND CALLISTO: AN INVESTIGATION USING VOYAGER IRIS THERMAL INFRARED SPECTRA (JUPITER). , 1987 .

[160]  T. Blommaert 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis , 2004, astro-ph/0401458.

[161]  A. Wesselink Heat conductivity and nature of the lunar surface material , 1948 .

[162]  M. Kaasalainen,et al.  Indications for Regolith on Itokawa from Thermal-Infrared Observations , 2004 .

[163]  Kiyotsugu Hirayama,et al.  Groups of asteroids probably of common origin , 1918 .

[164]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[165]  Giovanni B. Valsecchi,et al.  Mitigation-relevant science with Don Quijote - a European-led mission to a near-Earth asteroid , 2006 .

[166]  Akira Fujiwara,et al.  Pole and Global Shape of 25143 Itokawa , 2006, Science.

[167]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[168]  Alan W. Harris,et al.  Asteroids in the Thermal Infrared , 2002 .

[169]  David Jewitt,et al.  The Albedo Distribution of Jovian Trojan Asteroids , 2003 .

[170]  D. Morrison,et al.  Dealing with the Impact Hazard , 2002 .

[171]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[172]  Hajime Yano,et al.  Regolith Migration and Sorting on Asteroid Itokawa , 2007, Science.

[173]  D. Matson 1. Astronomical photometry at wavelengths of 8.5, 10.5, and 11.6 µm. 2. Infrared emission from asteroids at wavelengths of 8.5, 10.5, and 11.6 µm , 1972 .

[174]  A. Harris,et al.  The surface properties of small asteroids: Peculiar Betulia—A case study , 2005 .

[175]  Joseph A. Burns,et al.  Orbital evolution of the Gefion and Adeona asteroid families: close encounters with massive asteroids and the Yarkovsky effect , 2003 .

[176]  Andrea Milani,et al.  Yarkovsky Effect on Small Near-Earth Asteroids: Mathematical Formulation and Examples , 2000 .

[177]  Martin G. Cohen,et al.  Spectral Irradiance Calibration in the Infrared.VII.New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations , 1996 .

[178]  M. Fulchignoni,et al.  Near-IR spectroscopy of asteroids 21 Lutetia, 89 Julia, 140 Siwa, 2181 Fogelin and 5480 (1989YK8), potential targets for the Rosetta mission; remote observations campaign on IRTF , 2003, astro-ph/0312638.

[179]  William P. Jones,et al.  Temperatures and thermophysical properties of the lunar outermost layer , 1975 .

[180]  E. Kührt,et al.  A thermal model of the Martian satellites , 1989 .

[181]  H. Melosh,et al.  Gravitational Aggregates: Evidence and Evolution , 2002 .

[182]  D. Morrison The diameter and thermal inertia of 433 Eros , 1976 .

[183]  S. Lord A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation , 1992 .

[184]  J. Piironen,et al.  Asteroid Photometric and Polarimetric Phase Effects , 2002 .

[185]  D. Morrison,et al.  Thermal properties of the Galilean satellites , 1973 .

[186]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[187]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[188]  A. Cheng Collisional evolution of the asteroid belt , 2004 .

[189]  Alberto Cellino,et al.  Albedo and size determination of potentially hazardous asteroids: (99942) Apophis , 2007 .

[190]  K. Housen,et al.  REGOLITHS ON SMALL BODIES IN THE SOLAR SYSTEM , 1982 .

[191]  B. Jakosky On the thermal properties of Martian fines , 1986 .

[192]  J. R. Houck,et al.  The Infrared Spectrograph (IRS) on the Spitzer Space Telescope , 2004, astro-ph/0406167.

[193]  E. Ryan,et al.  Asteroid Impacts: Laboratory Experiments and Scaling Laws , 2002 .

[194]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[195]  D. Matson,et al.  Visual and radiometric photometry of 1580 Betulia , 1978 .

[196]  Lance A. M. Benner,et al.  Asteroid Radar Astronomy , 1983 .

[197]  Petr Pravec,et al.  Direct Detection of the Asteroidal YORP Effect , 2007, Science.

[198]  Apostolos A. Christou,et al.  The statistics of flight opportunities to accessible near-Earth asteroids , 2003 .

[199]  D. Morrison,et al.  Recalibration of the photometric/radiometric method of determining asteroid sizes , 1974 .

[200]  D. Allen Infrared Diameter of Vesta , 1970, Nature.

[201]  Elisabetta Dotto,et al.  Asteroid target selection for the new Rosetta mission baseline: 21 Lutetia and 2867 Steins , 2005 .

[202]  G. Zeuner,et al.  Technische thermodynamik , 1900 .

[203]  D. Morrison Asteroid sizes and albedos , 1977 .

[204]  Hajime Yano,et al.  Technologies for Future Asteroid Exploration: What We Learned from Hayabusa Mission , 2006 .

[205]  C. Chapman The hazard of near-Earth asteroid impacts on earth , 2004 .

[206]  William H. Press,et al.  Numerical recipes in C , 2002 .

[207]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[208]  Barucci,et al.  Near infra-red spectroscopy of the asteroid 21 Lutetia - I. New results of long-term campaign , 2006 .

[209]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[210]  Steve B. Howell,et al.  TWO-DIMENSIONAL APERTURE PHOTOMETRY: SIGNAL-TO-NOISE RATIO OF POINT-SOURCE OBSERVATIONS AND OPTIMAL DATA-EXTRACTION TECHNIQUES , 1989 .

[211]  N. Izenberg,et al.  The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros , 2001, Nature.

[212]  Richard P. Binzel,et al.  Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .

[213]  G. Vogt Asteroids, Comets and Meteors , 1996 .

[214]  Yarkovsky Effect and the Dynamics of the Solar System , 2006 .

[215]  Alberto Cellino,et al.  Physical and Dynamical Properties of Asteroid Families , 2002 .

[216]  K. Krisciunas,et al.  ATMOSPHERIC EXTINCTION AND NIGHT-SKY BRIGHTNESS AT MAUNA-KEA. , 1987 .

[217]  R. Jedicke,et al.  Asteroid families , 2005, Proceedings of the International Astronomical Union.

[218]  D. Rubincam,et al.  Drag on the LAGEOS satellite , 1990 .

[219]  D. Lupishko,et al.  A New Calibration of the Polarimetric Albedo Scale of Asteroids , 1996 .

[220]  E. Lellouch,et al.  Pluto's Thermal Lightcurve: Spitzer Mips and Irs Observations , 2006 .

[221]  A. Harris The surface properties of small asteroids from thermal-infrared observations , 2005, Proceedings of the International Astronomical Union.

[222]  Thomas Müller,et al.  Asteroids as calibration standards in the thermal infrared for space observatories , 2002 .

[223]  P. Shopbell,et al.  Mosaicking with MOPEX , 2006 .

[224]  A. Cheng Implications of the NEAR mission for internal structure of Mathilde and Eros , 2004 .

[225]  S. B. Nicholson,et al.  Lunar radiation and temperatures , 1930 .

[226]  Robert H. Brown,et al.  Ellipsoidal geometry in asteroid thermal models: The standard radiometric model , 1985 .

[227]  M. Abe,et al.  Lightcurve and color of near-earth-asteroid 1989ML , 2000 .

[228]  D. Rubincam,et al.  LAGEOS orbit decay due to infrared radiation from Earth , 1987 .

[229]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[230]  Joseph D. Adams,et al.  The size and albedo of Rosetta fly-by target 21 Lutetia from new IRTF measurements and thermal modeling , 2006 .

[231]  Harold F. Levison,et al.  The recent breakup of an asteroid in the main-belt region , 2002, Nature.

[232]  M. Kaasalainen,et al.  Asteroid Models from Disk-Integrated Data , 2002 .