Maximum Likelihood Range Dependence Compensation for STAP

We present a new method to estimate the clutter-plus-noise covariance matrix used to compute an adaptive filter in space-time adaptive processing (STAP). The method computes a ML estimate of the clutter scattering coefficients using a Bayesian framework and knowledge on the structure of the covariance matrix. A priori information on the clutter statistics is used to regularize the estimation method. Other estimation methods based on the computation of the power spectrum using for instance the periodogram are compared to our method. The result in terms of SINR loss shows that the proposed method outperforms the other ones.

[1]  Jacques Verly,et al.  Registration-Based Solutions to the Range-Dependence Problem in Stap Radars , 2003 .

[2]  R. Klemm Principles of Space-Time Adaptive Processing , 2002 .

[3]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[4]  Richard Klemm,et al.  Introduction to space-time adaptive processing , 1998 .

[5]  F.D. Lapierre,et al.  Computationally-efficient range-dependence compensation method for bistatic radar STAP , 2005, IEEE International Radar Conference, 2005..

[6]  S. Blunt,et al.  Adaptive pulse compression via MMSE estimation , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[7]  B. Himed,et al.  Estimation of range-dependent clutter covariance by configuration system parameter estimation , 2005, IEEE International Radar Conference, 2005..

[8]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1994, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[9]  J.G. Verly,et al.  Range-dependence Issues in Multistatic STAP-based Radar , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[10]  J. Verly,et al.  Registration-based range-dependence compensation method for conformal array STAP , 2005 .