STELLAR DYNAMOS AND CYCLES FROM NUMERICAL SIMULATIONS OF CONVECTION
暂无分享,去创建一个
[1] R. Simoniello,et al. THE QUASI-BIENNIAL PERIODICITY AS A WINDOW ON THE SOLAR MAGNETIC DYNAMO CONFIGURATION , 2012, 1210.6796.
[2] N. Pizzolato,et al. The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs ? , 2003 .
[3] P. Charbonneau,et al. MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE , 2013 .
[4] S. Saar,et al. Time Evolution of the Magnetic Activity Cycle Period. II. Results for an Expanded Stellar Sample , 1999 .
[5] Peter A. Gilman,et al. Three-dimensional Spherical Simulations of Solar Convection. I. Differential Rotation and Pattern Evolution Achieved with Laminar and Turbulent States , 2000 .
[6] N. O. Weiss,et al. The relation between stellar rotation rate and activity cycle periods , 1984 .
[7] S. Tobias. Relating stellar cycle periods to dynamo calculations , 1998 .
[8] A. F. Lanza,et al. Multiple and changing cycles of active stars - II. Results , 2009, 0904.1747.
[9] Nicholas J. Wright,et al. THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.
[10] Paul Charbonneau,et al. ON THE MODE OF DYNAMO ACTION IN A GLOBAL LARGE-EDDY SIMULATION OF SOLAR CONVECTION , 2011 .
[11] Carolus J. Schrijver,et al. Heliophysics: Plasma Physics of the Local Cosmos , 2009 .
[12] The dependence of differential rotation on temperature and rotation , 2004, astro-ph/0410575.
[13] A. Brandenburg,et al. Magnetoconvection and dynamo coefficients: Dependence of the alpha-effect on rotation and magnetic field , 2001, astro-ph/0108274.
[14] M. Miesch,et al. Rapidly Rotating Suns and Active Nests of Convection , 2008, 0808.1716.
[15] Paul Charbonneau,et al. MAGNETIC CYCLES IN GLOBAL LARGE-EDDY SIMULATIONS OF SOLAR CONVECTION , 2010 .
[16] Chromospheric variations in main-sequence stars , 1978 .
[17] P. Gilman. Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II: Dynamos with cycles and strong feedbacks , 1983 .
[18] Mark S. Miesch,et al. MAGNETIC CYCLES IN A CONVECTIVE DYNAMO SIMULATION OF A YOUNG SOLAR-TYPE STAR , 2011, 1102.1993.
[19] Mark S. Miesch,et al. Solar Differential Rotation Influenced by Latitudinal Entropy Variations in the Tachocline , 2006 .
[20] Paul Charbonneau,et al. EULAG, a computational model for multiscale flows: An MHD extension , 2013, J. Comput. Phys..
[21] L. Kitchatinov,et al. The differential rotation of G dwarfs , 2011, 1101.5297.
[22] P. Charbonneau,et al. Fluctuations in Babcock-Leighton Dynamos. I. Period Doubling and Transition to Chaos , 2005 .
[23] M. Ossendrijver,et al. The solar dynamo , 2003 .
[24] Juri Toomre,et al. Turbulent Convection under the Influence of Rotation: Sustaining a Strong Differential Rotation , 2002 .
[25] H. K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids , 1978 .
[26] D. Hughes,et al. Mean induction and diffusion: the influence of spatial coherence , 2009, Journal of Fluid Mechanics.
[27] W. Chaplin,et al. A SEISMIC SIGNATURE OF A SECOND DYNAMO? , 2010, 1006.4305.
[28] Allan Sacha Brun,et al. Simulations of Turbulent Convection in Rotating Young Solarlike Stars: Differential Rotation and Meridional Circulation , 2007, 0707.3943.
[29] A. Brandenburg,et al. Reynolds stress and heat flux in spherical shell convection , 2010, 1010.1250.
[30] D. Nandy,et al. Space Climate and the Solar Stellar connection: What can we learn from the stars about long-term solar variability? , 2007 .
[31] S. Baliunas,et al. Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .
[32] M. Miesch,et al. PERSISTENT MAGNETIC WREATHS IN A RAPIDLY ROTATING SUN , 2010, 1011.2831.
[33] Baliunas,et al. A Dynamo Interpretation of Stellar Activity Cycles , 1996 .
[34] E. Parker. Hydromagnetic Dynamo Models , 1955 .
[35] J. Prusa,et al. EULAG, a computational model for multiscale flows , 2008 .