Relatively divisible and relatively flat objects in exact categories: applications
暂无分享,去创建一个
[1] Septimiu Crivei,et al. Relatively divisible and relatively flat objects in exact categories: applications , 2021, Appl. Algebra Eng. Commun. Comput..
[2] T. Brustle,et al. Reduction of exact structures , 2018, 1809.01282.
[3] Yılmaz Durǧun,et al. Absolutely s-Pure Modules and Neat-Flat Modules , 2015 .
[4] Yılmaz Durǧun,et al. CONEAT SUBMODULES AND CONEAT-FLAT MODULES , 2014 .
[5] S. Crivei. NEAT AND CONEAT SUBMODULES OF MODULES OVER COMMUTATIVE RINGS , 2014 .
[6] Zhanmin Zhu. C-COHERENT RINGS, C-SEMIHEREDITARY RINGS AND C-REGULAR RINGS , 2013 .
[7] H. Zöschinger. Schwach-Flache Moduln , 2013 .
[8] Yılmaz Durǧun,et al. Neat-flat Modules , 2013 .
[9] L. Mao. On Covers and Envelopes in Some Functor Categories , 2013 .
[10] László Fuchs,et al. Neat submodules over integral domains , 2012, Period. Math. Hung..
[11] S. Crivei. Maximal exact structures on additive categories revisited , 2011, 1106.1606.
[12] M. Prest. Definable Additive Categories: Purity and Model Theory , 2011 .
[13] Lidia Angeleri Hügel. ON SOME PRECOVERS AND PREENVELOPES , 2011 .
[14] James Gillespie. Model structures on exact categories , 2010, 1009.3574.
[15] Yueming Xiang. MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS , 2010 .
[16] M. Prest,et al. Covers in finitely accessible categories , 2010 .
[17] Overtoun M. G. Jenda,et al. Relative homological algebra , 1956 .
[18] Philipp Rothmaler,et al. When Cotorsion Modules are Pure injective , 2009, J. Math. Log..
[19] S. Crivei. EPIC ENVELOPES BY GENERALIZED FLAT MODULES , 2009 .
[20] Theo Buehler,et al. Exact Categories , 2008, 0811.1480.
[21] Helmut Zöschinger,et al. Schwach-injektive Moduln , 2006, Period. Math. Hung..
[22] A. Kuku,et al. Higher Algebraic K-Theory , 2006 .
[23] G. Garkusha. Relative Homological Algebra for the Proper Class ω f , 2004 .
[24] I. Herzog. PURE-INJECTIVE ENVELOPES , 2003 .
[25] Mark Hovey. Cotorsion pairs, model category structures, and representation theory , 2002 .
[26] E. Enochs,et al. All Modules Have Flat Covers , 2001 .
[27] S. Shelah,et al. ON THE LATTICE OF COTORSION THEORIES , 2001, math/0103154.
[28] W. Rump. Almost abelian categories , 2001 .
[29] Jianlong Chen,et al. On n-Coherent rings , 1996 .
[30] Jinzhong Xu. Flat covers of modules , 1996 .
[31] W. Crawley-Boevey. Locally finitely presented additive categories , 1994 .
[32] Marcel Erné,et al. A Primer on Galois Connections , 1993 .
[33] Robert Wisbauer,et al. Foundations of module and ring theory , 1991 .
[34] B. Keller. Chain complexes and stable categories , 1990 .
[35] G. Azumaya. Finite splitness and finite projectivity , 1987 .
[36] L. Salce. Cotorsion theories for abelian groups , 1979 .
[37] E. G. Sklyarenko,et al. RELATIVE HOMOLOGICAL ALGEBRA IN CATEGORIES OF MODULES , 1978 .
[38] E. Enochs. A Note on Absolutely Pure Modules , 1976, Canadian Mathematical Bulletin.
[39] R. Colby. Rings which have flat injective modules , 1975 .
[40] Bo Stenström,et al. Rings of Quotients: An Introduction to Methods of Ring Theory , 1975 .
[41] C. Megibben. Absolutely pure modules , 1970 .
[42] B. Stenström. Coherent Rings and Fp-Injective Modules , 1970 .
[43] G. M. Kelly. Monomorphisms, Epimorphisms, and Pull-Backs , 1969, Journal of the Australian Mathematical Society.
[44] B. Stenström. Purity in functor categories , 1968 .
[45] M. Karoubi. Algèbres de Clifford et $K$-théorie , 1968 .
[46] B. H. Maddox. Absolutely pure modules , 1967 .
[47] B. Stenström. Pure submodules , 1967 .
[48] David A. Buchsbaumi. A NOTE ON HOMOLOGY IN CATEGORIES , 1959 .