Relatively divisible and relatively flat objects in exact categories: applications

[1]  Septimiu Crivei,et al.  Relatively divisible and relatively flat objects in exact categories: applications , 2021, Appl. Algebra Eng. Commun. Comput..

[2]  T. Brustle,et al.  Reduction of exact structures , 2018, 1809.01282.

[3]  Yılmaz Durǧun,et al.  Absolutely s-Pure Modules and Neat-Flat Modules , 2015 .

[4]  Yılmaz Durǧun,et al.  CONEAT SUBMODULES AND CONEAT-FLAT MODULES , 2014 .

[5]  S. Crivei NEAT AND CONEAT SUBMODULES OF MODULES OVER COMMUTATIVE RINGS , 2014 .

[6]  Zhanmin Zhu C-COHERENT RINGS, C-SEMIHEREDITARY RINGS AND C-REGULAR RINGS , 2013 .

[7]  H. Zöschinger Schwach-Flache Moduln , 2013 .

[8]  Yılmaz Durǧun,et al.  Neat-flat Modules , 2013 .

[9]  L. Mao On Covers and Envelopes in Some Functor Categories , 2013 .

[10]  László Fuchs,et al.  Neat submodules over integral domains , 2012, Period. Math. Hung..

[11]  S. Crivei Maximal exact structures on additive categories revisited , 2011, 1106.1606.

[12]  M. Prest Definable Additive Categories: Purity and Model Theory , 2011 .

[13]  Lidia Angeleri Hügel ON SOME PRECOVERS AND PREENVELOPES , 2011 .

[14]  James Gillespie Model structures on exact categories , 2010, 1009.3574.

[15]  Yueming Xiang MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS , 2010 .

[16]  M. Prest,et al.  Covers in finitely accessible categories , 2010 .

[17]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[18]  Philipp Rothmaler,et al.  When Cotorsion Modules are Pure injective , 2009, J. Math. Log..

[19]  S. Crivei EPIC ENVELOPES BY GENERALIZED FLAT MODULES , 2009 .

[20]  Theo Buehler,et al.  Exact Categories , 2008, 0811.1480.

[21]  Helmut Zöschinger,et al.  Schwach-injektive Moduln , 2006, Period. Math. Hung..

[22]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[23]  G. Garkusha Relative Homological Algebra for the Proper Class ω f , 2004 .

[24]  I. Herzog PURE-INJECTIVE ENVELOPES , 2003 .

[25]  Mark Hovey Cotorsion pairs, model category structures, and representation theory , 2002 .

[26]  E. Enochs,et al.  All Modules Have Flat Covers , 2001 .

[27]  S. Shelah,et al.  ON THE LATTICE OF COTORSION THEORIES , 2001, math/0103154.

[28]  W. Rump Almost abelian categories , 2001 .

[29]  Jianlong Chen,et al.  On n-Coherent rings , 1996 .

[30]  Jinzhong Xu Flat covers of modules , 1996 .

[31]  W. Crawley-Boevey Locally finitely presented additive categories , 1994 .

[32]  Marcel Erné,et al.  A Primer on Galois Connections , 1993 .

[33]  Robert Wisbauer,et al.  Foundations of module and ring theory , 1991 .

[34]  B. Keller Chain complexes and stable categories , 1990 .

[35]  G. Azumaya Finite splitness and finite projectivity , 1987 .

[36]  L. Salce Cotorsion theories for abelian groups , 1979 .

[37]  E. G. Sklyarenko,et al.  RELATIVE HOMOLOGICAL ALGEBRA IN CATEGORIES OF MODULES , 1978 .

[38]  E. Enochs A Note on Absolutely Pure Modules , 1976, Canadian Mathematical Bulletin.

[39]  R. Colby Rings which have flat injective modules , 1975 .

[40]  Bo Stenström,et al.  Rings of Quotients: An Introduction to Methods of Ring Theory , 1975 .

[41]  C. Megibben Absolutely pure modules , 1970 .

[42]  B. Stenström Coherent Rings and Fp-Injective Modules , 1970 .

[43]  G. M. Kelly Monomorphisms, Epimorphisms, and Pull-Backs , 1969, Journal of the Australian Mathematical Society.

[44]  B. Stenström Purity in functor categories , 1968 .

[45]  M. Karoubi Algèbres de Clifford et $K$-théorie , 1968 .

[46]  B. H. Maddox Absolutely pure modules , 1967 .

[47]  B. Stenström Pure submodules , 1967 .

[48]  David A. Buchsbaumi A NOTE ON HOMOLOGY IN CATEGORIES , 1959 .