Computer Algebra for the Formation of Structural Matrices of Piezoceramic Finite Elements

This paper deals with the description of a theoretical background of systematic computer algebra methods for the formation of structural matrices of piezoceramic finite elements. The efficiency of computer algebra application was compared here with the numerical integration methods of forming the structural matrices of the finite elements. To this end, the computer algebra system VIBRAN was used. Two popular finite elements for modelling piezoceramic actuators of the sector-type and the triangular one are discussed. All structural matrices of the elements were derived, using the computer algebra technique with the following automatic program code generation.

[1]  Gregory S. Agnes,et al.  Active smart material system for buffet load alleviation , 1995, Smart Structures.

[2]  P. Seshu,et al.  A finite element model for nonlinear behaviour of piezoceramics under weak electric fields , 2005 .

[3]  H. Tzou Piezoelectric Shells: Distributed Sensing and Control of Continua , 1993 .

[4]  Max F. Platzer,et al.  Effect of leading-edge extension fences on the vortex wake of an F/A-18 model , 1995 .

[5]  H. Ashley,et al.  Active Control for Fin Buffet Alleviation , 1993 .

[6]  T. K. Caughey,et al.  On the stability problem caused by finite actuator dynamics in the collocated control of large space structures , 1985 .

[7]  K. M. Liew,et al.  Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators , 2004 .

[8]  Peter Hagedorn,et al.  Non-linear shear vibrations of piezoceramic actuators , 2005 .

[9]  Douglas I. Greenwell,et al.  Vortex control technique for the attenuation of fin buffet , 1993 .

[10]  Ramutis Bansevicius,et al.  Piezomechanics as a subsystem of mechatronics: present state of the art, problems, future developments , 1996, IEEE Trans. Ind. Electron..

[11]  Larry A. Meyn,et al.  Full-scale wind-tunnel studies of F/A-18 tail buffet , 1996 .

[12]  Sathya Hanagud,et al.  A COMPARISON OF H2 OPTIMIZED DESIGN AND CROSS-OVER POINT DESIGN FOR ACCELERATION FEEDBACK CONTROL , 1998 .

[13]  Stephen Gilmore,et al.  Evaluating the Performance of Skeleton-Based High Level Parallel Programs , 2004, International Conference on Computational Science.

[14]  Robert W. Moses,et al.  Vertical-tail-buffeting alleviation using piezoelectric actuators: some results of the actively controlled response of buffet-affected tails (ACROBAT) program , 1997, Smart Structures.

[15]  Eunsup Sim,et al.  ACTIVE VIBRATION CONTROL OF FLEXIBLE STRUCTURES WITH ACCELERATION FEEDBACK , 1993 .

[16]  Rosen T. Tenchev,et al.  A study of the accuracy of some FEM stress recovery schemes for 2D stress concentration problems , 1998 .

[17]  Chris L. Pettit,et al.  Full-scale wind-tunnel pressure measurements of an F/A-18 tail during buffet , 1996 .

[18]  F. Laouafa,et al.  An iterative algorithm for finite element analysis , 2004 .

[19]  Ramutis Bansevicius,et al.  Computer Algebra for Real-Time Dynamics of Robots with Large Numbers of Joints , 2004, International Conference on Computational Science.

[20]  Sathyanaraya Venkataramiah Hanagud F-15 vertical tail modifications - definition of design environment , 1988 .

[21]  Scott M. Murman,et al.  Computation of F/A-18 tail buffet , 1996 .

[22]  R. Bansevicius,et al.  Vibromotors for Precision Microrobots , 1988 .

[23]  Ramutis Bansevicius,et al.  Optimal Electrodes Configuration of Piezodrives , 2000 .

[24]  J. Z. Zhu,et al.  The finite element method , 1977 .

[25]  N. Komerath,et al.  Reduction of Narrow-Band Velocity Fluctuations Over an Aircraft Model , 1997 .

[26]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[27]  W. E. Triplett Pressure measurements on twin vertical tails in buffeting flow , 1983 .

[28]  Maxime P. Bayon de Noyer,et al.  Single Actuator and Multi-Mode Acceleration Feedback Control , 1998 .

[29]  Pauli Pedersen,et al.  Analysis and sensitivity analysis by computer algebra for a third-order plate finite element , 1993 .

[30]  C. J. Goh,et al.  APPROXIMATE POLE PLACEMENT FOR ACCELERATION FEEDBACK CONTROL OF FLEXIBLE STRUCTURES , 1996 .

[31]  Minh Q. Phan,et al.  Robust controller designs for second-order dynamic systems - A virtual passive approach , 1991 .

[32]  Jörg Wallaschek,et al.  The effect of tangential elasticity of the contact layer between stator and rotor in travelling wave ultrasonic motors , 2003 .

[33]  Randall Hauch,et al.  Reduction of vertical tail buffet response using active control , 1995 .

[34]  David G. Zimcik,et al.  Active control of vertical fin buffeting with aerodynamic control surface and strain actuation , 1997 .

[35]  S. G. Liou,et al.  Flow over a twin-tailed aircraft at angle of attack. II - Temporal characteristics , 1992 .

[36]  G. Gladwell,et al.  Solid mechanics and its applications , 1990 .

[37]  H. Saunders Book Reviews : The Finite Element Method (Revised): O.C. Zienkiewicz McGraw-Hill Book Co., New York, New York , 1980 .

[38]  N J Wood,et al.  Experimental investigation of twin-fin buffeting and suppression , 1993 .

[39]  Rogério J. Marczak,et al.  Object-oriented numerical integration - a template scheme for FEM and BEM applications , 2006, Adv. Eng. Softw..

[40]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.