The computational complexity of knot and link problems

We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, ie., capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, UNKNOTTING PROBLEM is in NP. We also consider the problem, SPLITTING PROBLEM of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in PSPACE. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.

[1]  C D Papakyriakopoulos,et al.  ON DEHN'S LEMMA AND THE ASPHERICITY OF KNOTS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Tietze,et al.  Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten , 1908 .

[3]  Joel Hass,et al.  Algorithms for recognizing knots and 3-manifolds , 1998 .

[4]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[5]  William Jaco,et al.  Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .

[6]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[8]  J. W. Alexander Topological invariants of knots and links , 1928 .

[9]  Amruth N. Kumar,et al.  Links , 1999, INTL.

[10]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[11]  Friedhelm Waldhausen,et al.  Recent results on sufficiently large 3-manifolds , 1976 .

[12]  HassJoel,et al.  The computational complexity of knot and link problems , 1999 .

[13]  Ulrich Oertel,et al.  An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .

[14]  W. Haken Theorie der Normalflächen , 1961 .

[15]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[16]  H. Seifert,et al.  Über das Geschlecht von Knoten , 1935 .

[17]  S. Whittington,et al.  Knots in self-avoiding walks , 1988 .

[18]  Geoffrey Hemion The Classification of Knots and 3-Dimensional Spaces , 1992 .

[19]  Joan S. Birman,et al.  Braids, Links, and Mapping Class Groups. (AM-82) , 1975 .

[20]  Dominic Welsh,et al.  Knots and braids: Some algorithmic questions , 1991, Graph Structure Theory.

[21]  Jozef H. Przytycki,et al.  Classical roots of knot theory , 1998 .

[22]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[23]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[24]  G. Budworth The Knot Book , 1983 .

[25]  Stephen Sawin,et al.  Links, quantum groups and TQFTs , 1995, q-alg/9506002.

[26]  M. Dehn,et al.  Die beiden Kleeblattschlingen , 1914 .

[27]  Geoffrey Hemion,et al.  On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds , 1979 .

[28]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[29]  Ronald C. Read The knot book: An elementary introduction to the mathematical theory of knots , 1997 .

[30]  Michael O. Rabin,et al.  Recursive Unsolvability of Group Theoretic Problems , 1958 .

[31]  Michael D. Hirsch,et al.  A new algorithm for recognizing the unknot , 1998 .

[32]  J. Hyam Rubinstein,et al.  PL equivariant surgery and invariant decompositions of 3-manifolds , 1989 .

[33]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[34]  Jack Snoeyink,et al.  A trivial knot whose spanning disks have exponential size , 1990, SCG '90.

[35]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[36]  Dominic Welsh,et al.  The Complexity of Knots , 1993 .

[37]  Kunio Murasugi,et al.  Knot theory and its applications , 1996 .

[38]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[39]  Edwin E. Moise,et al.  Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .

[40]  M. Dehn,et al.  Über die Topologie des dreidimensionalen Raumes , 1910 .

[41]  Horst Schubert,et al.  Bestimmung der Primfaktorzerlegung von Verkettungen , 1961 .

[42]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[43]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[44]  András Sebö,et al.  Hilbert Bases, Caratheodory's Theorem and Combinatorial Optimization , 1990, IPCO.

[45]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[46]  Nicholas Pippenger,et al.  Knots in random walks , 1989, Discret. Appl. Math..

[47]  Joan S. Birman New points of view in knot theory , 1993 .

[48]  J. Lagarias,et al.  The number of Reidemeister moves needed for unknotting , 1998, math/9807012.

[49]  John Hempel,et al.  RESIDUAL FINITENESS FOR 3-MANIFOLDS , 1987 .

[50]  W. Harvey THE CLASSIFICATION OF KNOTS AND 3‐DIMENSIONAL SPACES , 1995 .