The computational complexity of knot and link problems
暂无分享,去创建一个
[1] C D Papakyriakopoulos,et al. ON DEHN'S LEMMA AND THE ASPHERICITY OF KNOTS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.
[2] H. Tietze,et al. Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten , 1908 .
[3] Joel Hass,et al. Algorithms for recognizing knots and 3-manifolds , 1998 .
[4] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[5] William Jaco,et al. Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .
[6] D. Welsh,et al. On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[8] J. W. Alexander. Topological invariants of knots and links , 1928 .
[9] Amruth N. Kumar,et al. Links , 1999, INTL.
[10] Hellmuth Kneser,et al. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .
[11] Friedhelm Waldhausen,et al. Recent results on sufficiently large 3-manifolds , 1976 .
[12] HassJoel,et al. The computational complexity of knot and link problems , 1999 .
[13] Ulrich Oertel,et al. An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .
[14] W. Haken. Theorie der Normalflächen , 1961 .
[15] János Pach,et al. How to draw a planar graph on a grid , 1990, Comb..
[16] H. Seifert,et al. Über das Geschlecht von Knoten , 1935 .
[17] S. Whittington,et al. Knots in self-avoiding walks , 1988 .
[18] Geoffrey Hemion. The Classification of Knots and 3-Dimensional Spaces , 1992 .
[19] Joan S. Birman,et al. Braids, Links, and Mapping Class Groups. (AM-82) , 1975 .
[20] Dominic Welsh,et al. Knots and braids: Some algorithmic questions , 1991, Graph Structure Theory.
[21] Jozef H. Przytycki,et al. Classical roots of knot theory , 1998 .
[22] Jeffrey C. Lagarias,et al. The computational complexity of knot and link problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[23] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[24] G. Budworth. The Knot Book , 1983 .
[25] Stephen Sawin,et al. Links, quantum groups and TQFTs , 1995, q-alg/9506002.
[26] M. Dehn,et al. Die beiden Kleeblattschlingen , 1914 .
[27] Geoffrey Hemion,et al. On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds , 1979 .
[28] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[29] Ronald C. Read. The knot book: An elementary introduction to the mathematical theory of knots , 1997 .
[30] Michael O. Rabin,et al. Recursive Unsolvability of Group Theoretic Problems , 1958 .
[31] Michael D. Hirsch,et al. A new algorithm for recognizing the unknot , 1998 .
[32] J. Hyam Rubinstein,et al. PL equivariant surgery and invariant decompositions of 3-manifolds , 1989 .
[33] D. Welsh. Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .
[34] Jack Snoeyink,et al. A trivial knot whose spanning disks have exponential size , 1990, SCG '90.
[35] J. Birman. Braids, Links, and Mapping Class Groups. , 1975 .
[36] Dominic Welsh,et al. The Complexity of Knots , 1993 .
[37] Kunio Murasugi,et al. Knot theory and its applications , 1996 .
[38] V. Jones. A polynomial invariant for knots via von Neumann algebras , 1985 .
[39] Edwin E. Moise,et al. Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .
[40] M. Dehn,et al. Über die Topologie des dreidimensionalen Raumes , 1910 .
[41] Horst Schubert,et al. Bestimmung der Primfaktorzerlegung von Verkettungen , 1961 .
[42] J. Stillwell. Classical topology and combinatorial group theory , 1980 .
[43] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[44] András Sebö,et al. Hilbert Bases, Caratheodory's Theorem and Combinatorial Optimization , 1990, IPCO.
[45] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[46] Nicholas Pippenger,et al. Knots in random walks , 1989, Discret. Appl. Math..
[47] Joan S. Birman. New points of view in knot theory , 1993 .
[48] J. Lagarias,et al. The number of Reidemeister moves needed for unknotting , 1998, math/9807012.
[49] John Hempel,et al. RESIDUAL FINITENESS FOR 3-MANIFOLDS , 1987 .
[50] W. Harvey. THE CLASSIFICATION OF KNOTS AND 3‐DIMENSIONAL SPACES , 1995 .