Generalized Compressible Flows and Solutions of the $$H(\mathrm {div})$$H(div) Geodesic Problem

We study the geodesic problem on the group of diffeomorphism of a domain M⊂Rd, equipped with the H(div) metric. The geodesic equations coincide with the Camassa-Holm equation when d=1, and represent one of its possible multi-dimensional generalizations when d>1. We propose a relaxation a la Brenier of this problem, in which solutions are represented as probability measures on the space of continuous paths on the cone over M. We use this relaxation to prove that smooth H(div) geodesics are globally length minimizing for short times. We also prove that there exists a unique pressure field associated to solutions of our relaxation. Finally, we propose a numerical scheme to construct generalized solutions on the cone and present some numerical results illustrating the relation between the generalized Camassa-Holm and incompressible Euler solutions.

[1]  Luca Nenna Numerical Methods for Multi-Marginal Optimal Transportation , 2016 .

[2]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[3]  L. Ambrosio,et al.  Geodesics in the Space of Measure-Preserving Maps and Plans , 2007, math/0701848.

[4]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[5]  Quentin Mérigot,et al.  A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations , 2018, Found. Comput. Math..

[6]  G. Peyré,et al.  Unbalanced optimal transport: Dynamic and Kantorovich formulations , 2015, Journal of Functional Analysis.

[7]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[8]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[9]  Y. Brenier The dual Least Action Problem for an ideal, incompressible fluid , 1993 .

[10]  Vanishing geodesic distance for right-invariant Sobolev metrics on diffeomorphism groups , 2018, Annals of Global Analysis and Geometry.

[11]  Jean-Marie Mirebeau,et al.  Minimal Geodesics Along Volume-Preserving Maps, Through Semidiscrete Optimal Transport , 2015, SIAM J. Numer. Anal..

[12]  D. Mumford,et al.  VANISHING GEODESIC DISTANCE ON SPACES OF SUBMANIFOLDS AND DIFFEOMORPHISMS , 2004, math/0409303.

[13]  Jean-David Benamou,et al.  Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm , 2017, Numerische Mathematik.

[14]  Alessio Figalli,et al.  On the regularity of the pressure field of Brenier’s weak solutions to incompressible Euler equations , 2008 .

[15]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[16]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[17]  Y. Brenier The least action principle and the related concept of generalized flows for incompressible perfect fluids , 1989 .

[18]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[19]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[20]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[21]  François-Xavier Vialard,et al.  An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.

[22]  Global Lagrangian solutions of the Camassa-Holm equation , 2017, 1710.05484.

[23]  J. K. Hunter,et al.  Dynamics of director fields , 1991 .

[24]  Thomas Gallouet,et al.  The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view , 2016 .

[25]  Simone Di Marino,et al.  Metric completion of $Diff([0,1])$ with the $H1$ right-invariant metric , 2019, 1906.09139.

[26]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[27]  J. Lenells The Hunter–Saxton equation describes the geodesic flow on a sphere , 2007 .

[28]  B. Khesin,et al.  Geometry of Diffeomorphism Groups, Complete integrability and Geometric statistics , 2013 .

[29]  Giuseppe Savaré,et al.  Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures , 2015, 1508.07941.

[30]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[31]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[32]  Jerrold E. Marsden,et al.  EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .

[33]  L. Molinet On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey , 2004 .

[34]  A. Shnirelman Generalized fluid flows, their approximation and applications , 1994 .