Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS.

We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.

[1]  Jinyeong Lee,et al.  Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. , 2012, Nano letters.

[2]  Zhong Lin Wang Self-assembled nanoarchitectures of polar nanobelts/nanowires , 2005 .

[3]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[4]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[5]  Hua-rui Xu,et al.  Ultralarge single crystal SnS rectangular nanosheets. , 2011, Chemical communications.

[6]  Kenneth C. Mills,et al.  Thermodynamic data for inorganic sulphides, selenides and tellurides , 1974 .

[7]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[8]  J. J. Buckley,et al.  Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells. , 2011, Nanoscale.

[9]  S. Mohammad,et al.  Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism. , 2008, Nano letters.

[10]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[11]  M. Gao,et al.  Investigations on Iron Sulfide Nanosheets Prepared via a Single-Source Precursor Approach , 2008 .

[12]  Seiji Takeda,et al.  Growth rate of silicon nanowires , 2005 .

[13]  Jiehua Liu,et al.  Two‐Dimensional Nanoarchitectures for Lithium Storage , 2012, Advanced materials.

[14]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[15]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[16]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[17]  D. Gregory,et al.  One-step synthesis of bismuth telluride nanosheets of a few quintuple layers in thickness. , 2011, Angewandte Chemie.

[18]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[19]  A. Aruchamy,et al.  Photoelectrochemistry and photovoltaics of layered semiconductors , 1992 .

[20]  Jonathan N. Coleman,et al.  Two‐Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. , 2011 .

[21]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[22]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[23]  Jun Dai,et al.  Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface , 2012, Advanced materials.

[24]  W. Dang,et al.  Topological insulator nanostructures for near-infrared transparent flexible electrodes. , 2012, Nature chemistry.

[25]  Alan M. Cassell,et al.  Chemical vapor deposition of methane for single-walled carbon nanotubes , 1998 .

[26]  Jung Ho Yu,et al.  Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. , 2009, Angewandte Chemie.

[27]  D. Hewak,et al.  Deposition and characterization of germanium sulphide glass planar waveguides. , 2004, Optics express.

[28]  T. Fukano,et al.  GeS2/metal thin film bilayered structures as write-once-type optical recording materials , 2006 .

[29]  Luigi Colombo,et al.  Evolution of graphene growth on Ni and Cu by carbon isotope labeling. , 2009, Nano letters.

[30]  Francisco Pompeo,et al.  Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. , 2003, Journal of the American Chemical Society.

[31]  Yi Cui,et al.  Formation of chiral branched nanowires by the Eshelby Twist. , 2008, Nature nanotechnology.

[32]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[33]  D. Dobkin,et al.  Principles of Chemical Vapor Deposition , 2003 .

[34]  Jing Kong,et al.  Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. , 2010, Nano letters.

[35]  Ian T. Sines,et al.  Chemical Synthesis of Two-Dimensional Iron Chalcogenide Nanosheets: FeSe, FeTe, Fe(Se,Te), and FeTe2 , 2009 .

[36]  Wenhui Dang,et al.  Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential. , 2010, Nano letters.

[37]  Hongkun Park,et al.  Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures. , 2008, Journal of the American Chemical Society.

[38]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[39]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[40]  S. Cha,et al.  Effects of Flow Transport of the Ar Carrier on the Synthesis of ZnO Nanowires by Chemical Vapor Deposition , 2011 .

[41]  Andreas Kornowski,et al.  Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment , 2010, Science.

[42]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport. , 2000 .

[43]  Sang‐Woo Kim,et al.  General Route to Single-Crystalline SnO Nanosheets on Arbitrary Substrates , 2010 .

[44]  Wei Zhang,et al.  High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO2 Nanosheets , 2012, Advanced materials.

[45]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[46]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[47]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[48]  Weichao Yu,et al.  Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2 , 2001 .

[49]  V. Grillo,et al.  Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy , 2008, Nanotechnology.

[50]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[51]  S. Kodambaka,et al.  Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. , 2006, Physical review letters.

[52]  C. Lieber,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[53]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[54]  H. Wiedemeier,et al.  Refinement of the structures of GeS, GeSe, SnS and SnSe , 1978 .

[55]  Jian-Min Li Mass production of graphene-like single-crystalline NbSe2 (004) nanosheets via intercalant-assisted thermal cleavage , 2010 .