GaN-Based Optical Devices
暂无分享,去创建一个
[1] T. Jackson,et al. Fast Flexible Plastic Substrate ZnO Circuits , 2010, IEEE Electron Device Letters.
[2] S. Bauer,et al. Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.
[3] M. Scheffler,et al. Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN , 2009 .
[4] Yu-Cheng Lin,et al. Flexible electronics sensors for tactile multiscanning. , 2009, The Review of scientific instruments.
[5] Zhiyong Fan,et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.
[6] S. Denbaars,et al. Blue-Green InGaN/GaN Laser Diodes on Miscut m-Plane GaN Substrate , 2009 .
[7] K. Katayama,et al. 531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .
[8] M. McCluskey,et al. X-ray diffraction of MgxZn1−xO and ZnO nanocrystals under high pressure , 2009 .
[9] S. Denbaars,et al. Nonpolar AlGaN-Cladding-Free Blue Laser Diodes with InGaN Waveguiding , 2009 .
[10] C. Zah,et al. 500-nm Optical Gain Anisotropy of Semipolar (1122) InGaN Quantum Wells , 2009 .
[11] I. Markevich,et al. Photoluminescence of ZnO ceramics sintered with a flux , 2009 .
[12] Takashi Miyoshi,et al. 510–515 nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate , 2009 .
[13] H. Ohta,et al. Nonpolar/Semipolar GaN Technology for Violet, Blue, and Green Laser Diodes , 2009 .
[14] J. Speck,et al. Nonpolar and Semipolar Group III Nitride-Based Materials , 2009 .
[15] K. Fujito,et al. Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE , 2009 .
[16] Motoaki Iwaya,et al. Misfit Strain Relaxation by Stacking Fault Generation in InGaN Quantum Wells Grown on m-Plane GaN , 2009 .
[17] S. Denbaars,et al. Continuous-Wave Operation of InGaN/GaN Laser Diodes on Semipolar (1 12 2) Plane Gallium Nitrides , 2009 .
[18] M. McCluskey,et al. Optical transitions and multiphonon Raman scattering of Cu doped ZnO and MgZnO ceramics , 2009 .
[19] M. Stutzmann,et al. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy , 2009 .
[20] S. Denbaars,et al. AlGaN-Cladding Free Green Semipolar GaN Based Laser Diode with a Lasing Wavelength of 506.4 nm , 2009 .
[21] M. Grant Norton,et al. Optical properties of ZnO and MgZnO nanocrystals below and at the phase separation range , 2008 .
[22] Takashi Mukai,et al. Polarization switching phenomena in semipolar InxGa1-xN/GaN quantum well active layers , 2008 .
[23] S. Denbaars,et al. Stimulated Emission at Blue-Green (480 nm) and Green (514 nm) Wavelengths from Nonpolar (m-plane) and Semipolar (1122) InGaN Multiple Quantum Well Laser Diode Structures , 2008 .
[24] H. Ohta,et al. Anisotropic optical gain in m-plane InxGa1−xN/GaN multiple quantum well laser diode wafers fabricated on the low defect density freestanding GaN substrates , 2008 .
[25] Hirofumi Kan,et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode , 2008 .
[26] James S. Speck,et al. Demonstration of 426 nm InGaN/GaN Laser Diodes Fabricated on Free-Standing Semipolar (1122) Gallium Nitride Substrates , 2008 .
[27] Masashi Kubota,et al. High-Efficiency Continuous-Wave Operation of Blue-Green Laser Diodes Based on Nonpolar m-Plane Gallium Nitride , 2008 .
[28] James S. Speck,et al. Optical properties of yellow light-emitting diodes grown on semipolar (112¯2) bulk GaN substrates , 2008 .
[29] Martin Feneberg,et al. Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide , 2008 .
[30] Masataka Ohta,et al. Blue Laser Diodes Fabricated on m-Plane GaN Substrates , 2008 .
[31] Masashi Kubota,et al. Temperature dependence of polarized photoluminescence from nonpolar m-plane InGaN multiple quantum wells for blue laser diodes , 2008 .
[32] M. Scheffler,et al. Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN , 2008, 0801.0421.
[33] James S. Speck,et al. Impacts of dislocation bending and impurity incorporation on the local cathodoluminescence spectra of GaN grown by ammonothermal method , 2007 .
[34] J. Huso,et al. The properties of ZnO photoluminescence at and above room temperature , 2007 .
[35] Masashi Kubota,et al. Quantum-confined Stark effects in the m-plane In0.15Ga0.85N∕GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate , 2007 .
[36] Hiroaki Ohta,et al. Characteristics of Polarized Electroluminescence from m-plane InGaN-based Light Emitting Diodes , 2007 .
[37] H. Ohta,et al. Temperature dependence of polarized electroluminescence from nonpolar m-plane InGaN-based light emitting diodes , 2007 .
[38] S. Lau,et al. Edge-Emitting Vertically Aligned ZnO Nanorods Random Laser on Plastic Substrate , 2007, IEEE Photonics Technology Letters.
[39] S. Denbaars,et al. High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate , 2007 .
[40] M. G. Norton,et al. Low temperature LO-phonon dynamics of MgZnO nanoalloys , 2007 .
[41] Masashi Kubota,et al. Pure Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride with InGaN Waveguiding Layers , 2007 .
[42] A. Yamaguchi. Anisotropic Optical Matrix Elements in Strained GaN Quantum Wells on Semipolar and Nonpolar Substrates , 2007 .
[43] S. Nakamura,et al. A GaN bulk crystal with improved structural quality grown by the ammonothermal method. , 2007, Nature materials.
[44] J. Temmyo,et al. Full-color electroluminescence from ZnO-based heterojunction diodes , 2007 .
[45] Hiroaki Ohta,et al. Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes , 2007 .
[46] Mathew C. Schmidt,et al. Demonstration of Nonpolar m-Plane InGaN/GaN Laser Diodes , 2007 .
[47] S. Denbaars,et al. High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (101̄1̄) Bulk GaN Substrates , 2007 .
[48] Seoung-Hwan Park,et al. Depolarization effects in (112¯2)-oriented InGaN∕GaN quantum well structures , 2007 .
[49] Masashi Kubota,et al. Continuous-Wave Operation of Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride , 2007 .
[50] P. Heremans. Semiconductor electronics: Organic crystals at large , 2006, Nature.
[51] H. Ohta,et al. Dislocation-Free m-Plane InGaN/GaN Light-Emitting Diodes on m-Plane GaN Single Crystals , 2006 .
[52] T. Zheleva,et al. Pressure response of the ultraviolet photoluminescence of ZnO and MgZnO nanocrystallites , 2006 .
[53] A. Uedono,et al. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.
[54] M. Ghosh,et al. Structural and optical properties of Zn1-xMgxO nanocrystals obtained by low temperature method , 2006, 1109.2250.
[55] Hsin-Ming Cheng,et al. Band gap engineering and stimulated emission of ZnMgO nanowires , 2006 .
[56] T. Mukai,et al. Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates , 2006 .
[57] M. Schubert,et al. Infrared optical properties of MgxZn1-xO thin films (0≤x≤1) : Long-wavelength optical phonons and dielectric constants , 2006 .
[58] K. Thonke,et al. Au-catalyzed growth processes and luminescence properties of ZnO nanopillars on Si , 2006 .
[59] J. Huso,et al. Dynamics of GaN band edge photoluminescence at near-room-temperature regime , 2006 .
[60] K. Chattopadhyay,et al. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique , 2006 .
[61] T. Zheleva,et al. Ultraviolet-Photoluminescence and Raman Properties of MgxZn1-xO Nanopowders^* , 2006 .
[62] R. Laskowski,et al. Ab initio calculation of excitons in ZnO , 2006 .
[63] J. Huso,et al. Raman scattering of polar modes of ZnO crystallites , 2005 .
[64] S. Denbaars,et al. Polarized Light Emission from Nonpolar InGaN Light-Emitting Diodes Grown on a Bulk m-Plane GaN Substrate , 2005 .
[65] M. Asif Khan,et al. III–Nitride UV Devices , 2005 .
[66] Takashi Mukai,et al. Confocal microphotoluminescence of InGaN-based light-emitting diodes , 2005 .
[67] T. Hanada,et al. Structural variation of cubic and hexagonal MgxZn1−xO layers grown on MgO(111)∕c-sapphire , 2005 .
[68] H. Morkoç,et al. A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .
[69] Laddawan Miko,et al. Development of ultra-high sensitivity wide-band gap UV-EUV detectors at NASA Goddard Space Flight Center , 2005, SPIE Optics + Photonics.
[70] Peidong Yang,et al. Nanowire dye-sensitized solar cells , 2005, Nature materials.
[71] San-Yuan Chen,et al. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates , 2005 .
[72] D. Look,et al. Study of the Photoluminescence of Phosphorus-Doped p-Type ZnO Thin Films Grown by Radio-Frequency Magnetron Sputtering , 2005 .
[73] A. Waag,et al. Pressure-dependent photoluminescence study of ZnO nanowires , 2005 .
[74] S. Pearton,et al. Development of MgZnO-ZnO-AlGaN heterostructures for ultraviolet light emitting applications , 2005 .
[75] H. Morkoç,et al. Luminescence properties of defects in GaN , 2005 .
[76] E. Fortunato,et al. Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature , 2005 .
[77] Clement Yuen,et al. Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer , 2005 .
[78] C. Schlegel,et al. Vertical nanowire light-emitting diode , 2004 .
[79] H. Ohta,et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.
[80] H. Morkoç,et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO , 2004 .
[81] Toshiki Makimoto,et al. High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers , 2004 .
[82] K. H. Kim,et al. Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing , 2004 .
[83] Zhifu Liu,et al. Blueshift of near band edge emission in Mg doped ZnO thin films and aging , 2004 .
[84] S. Denbaars,et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening , 2004 .
[85] Jürgen Christen,et al. Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .
[86] Akio Sasaki,et al. Radiative carrier recombination dependent on temperature and well width of InGaN/GaN single quantum well , 2004 .
[87] Akio Yamamoto,et al. Indium nitride (InN): A review on growth, characterization, and properties , 2003 .
[88] Wladek Walukiewicz,et al. Universal bandgap bowing in group III nitride alloys , 2003 .
[89] M. J. Herrera-Cabrera,et al. Optical properties and electronic structure of rock-salt ZnO under pressure , 2003 .
[90] T. S. Lee,et al. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition , 2003 .
[91] S. Denbaars,et al. Stimulated emission and ultrafast carrier relaxation in InGaN multiple quantum wells , 2002, cond-mat/0210343.
[92] R. Meulenberg,et al. Pressure-induced electronic coupling in CdSe semiconductor quantum dots , 2002 .
[93] James S. Speck,et al. Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire , 2002 .
[94] A. Kavokin,et al. ZnO as a material mostly adapted for the realization of room-temperature polariton lasers , 2002 .
[95] T. Venkatesan,et al. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films , 2002 .
[96] Oliver Brandt,et al. Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy , 2002 .
[97] Yiying Wu,et al. Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.
[98] Hongxing Jiang,et al. Linewidths of excitonic luminescence transitions in AlGaN alloys , 2001 .
[99] Takashi Mukai,et al. Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes , 2000 .
[100] M. Reiche,et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.
[101] S. Bedair,et al. Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures , 2000 .
[102] Bruce W. Wessels,et al. Investigation of the formation of the 2.8 eV luminescence band in p-type GaN:Mg , 2000 .
[103] Shuji Nakamura,et al. Time-resolved photoluminescence spectroscopy in GaN-based semiconductors with micron spatial resolution , 2000 .
[104] L. Grenouillet,et al. Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well , 2000 .
[105] J. Jiang,et al. Structural stability in nanocrystalline ZnO , 2000 .
[106] R. Merlin,et al. Raman scattering in materials science , 2000 .
[107] John F. Muth,et al. Optical and Structural Properties of Epitaxial MgxZn1-xO Alloys , 1999 .
[108] Robert P. H. Chang,et al. Effect of external feedback on lasing in random media , 1999 .
[109] A. Zunger,et al. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends , 1999 .
[110] S. Nakamura,et al. Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes , 1999 .
[111] John E. Bowers,et al. Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth , 1999 .
[112] Kazumi Wada,et al. Exciton localization in InGaN quantum well devices , 1998 .
[113] Umesh K. Mishra,et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .
[114] Michael Kunzer,et al. Nature of the 2.8 eV photoluminescence band in Mg doped GaN , 1998 .
[115] Michael G. Spencer,et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices , 1998 .
[116] Akira Ohtomo,et al. MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .
[117] Masahiko Sano,et al. InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .
[118] Oliver Ambacher,et al. Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films , 1997 .
[119] Shuji Nakamura,et al. Luminescences from localized states in InGaN epilayers , 1997 .
[120] D. Vanderbilt,et al. Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997, cond-mat/9705105.
[121] Shuji Nakamura,et al. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours , 1997 .
[122] S. Nakamura,et al. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .
[123] S. Nakamura,et al. Effects of biaxial strain on exciton resonance energies of hexagonal GaN heteroepitaxial layers , 1996 .
[124] Hadis Morkoç,et al. Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .
[125] R. Street,et al. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .
[126] S. Nakamura,et al. InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .
[127] Takashi Mukai,et al. Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes , 1995 .
[128] Shuji Nakamura,et al. High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes , 1995 .
[129] S. Nakamura,et al. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .
[130] Klaus Reimann,et al. Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure , 1995 .
[131] S. Tolbert,et al. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure , 1995 .
[132] S. Tolbert,et al. Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.
[133] H. Morkoç,et al. GaN, AlN, and InN: A review , 1992 .
[134] S. Nakamura,et al. Thermal Annealing Effects on P-Type Mg-Doped GaN Films , 1992 .
[135] S. Nakamura,et al. Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .
[136] Shuji Nakamura,et al. GaN Growth Using GaN Buffer Layer , 1991 .
[137] R. W. Major,et al. Polarization currents in varistors , 1990 .
[138] Stergios Logothetidis,et al. Temperature dependence of the dielectric function of germanium , 1984 .
[139] H. Queisser,et al. Alloy broadening in photoluminescence spectra ofAlxGa1−xAs , 1984 .
[140] D. Huffman,et al. Use of smoke samples in diamond-anvil cells to measure pressure dependence of optical spectra: Application to the ZnO exciton , 1982 .
[141] T. Gupta,et al. Microstructural evaluation of multicomponent ZnO ceramics , 1979 .
[142] W. C. Walker,et al. Exciton thermoreflectance of MgO and CaO , 1973 .
[143] Denis L. Rousseau,et al. First-Order Raman Effect in Wurtzite-Type Crystals , 1969 .
[144] H. Ibach. Thermal Expansion of Silicon and Zinc Oxide (II) , 1969 .
[145] W. Y. Liang,et al. Transmission Spectra of ZnO Single Crystals , 1968 .
[146] D. C. Reynolds,et al. Exciton Spectrum of ZnO , 1966 .
[147] E. Segnit,et al. The System MgO‐ZnO‐SiO2 , 1965 .
[148] Y. Araki. Thermal expansion coefficient of polytetrafluoroethylene in the vicinity of its glass transition at about 400°K , 1965 .
[149] Peter D. Johnson. Some Optical Properties of MgO in the Vacuum Ultraviolet , 1954 .