GaN-Based Optical Devices

[1]  T. Jackson,et al.  Fast Flexible Plastic Substrate ZnO Circuits , 2010, IEEE Electron Device Letters.

[2]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[3]  M. Scheffler,et al.  Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN , 2009 .

[4]  Yu-Cheng Lin,et al.  Flexible electronics sensors for tactile multiscanning. , 2009, The Review of scientific instruments.

[5]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[6]  S. Denbaars,et al.  Blue-Green InGaN/GaN Laser Diodes on Miscut m-Plane GaN Substrate , 2009 .

[7]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[8]  M. McCluskey,et al.  X-ray diffraction of MgxZn1−xO and ZnO nanocrystals under high pressure , 2009 .

[9]  S. Denbaars,et al.  Nonpolar AlGaN-Cladding-Free Blue Laser Diodes with InGaN Waveguiding , 2009 .

[10]  C. Zah,et al.  500-nm Optical Gain Anisotropy of Semipolar (1122) InGaN Quantum Wells , 2009 .

[11]  I. Markevich,et al.  Photoluminescence of ZnO ceramics sintered with a flux , 2009 .

[12]  Takashi Miyoshi,et al.  510–515 nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate , 2009 .

[13]  H. Ohta,et al.  Nonpolar/Semipolar GaN Technology for Violet, Blue, and Green Laser Diodes , 2009 .

[14]  J. Speck,et al.  Nonpolar and Semipolar Group III Nitride-Based Materials , 2009 .

[15]  K. Fujito,et al.  Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE , 2009 .

[16]  Motoaki Iwaya,et al.  Misfit Strain Relaxation by Stacking Fault Generation in InGaN Quantum Wells Grown on m-Plane GaN , 2009 .

[17]  S. Denbaars,et al.  Continuous-Wave Operation of InGaN/GaN Laser Diodes on Semipolar (1 12 2) Plane Gallium Nitrides , 2009 .

[18]  M. McCluskey,et al.  Optical transitions and multiphonon Raman scattering of Cu doped ZnO and MgZnO ceramics , 2009 .

[19]  M. Stutzmann,et al.  Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy , 2009 .

[20]  S. Denbaars,et al.  AlGaN-Cladding Free Green Semipolar GaN Based Laser Diode with a Lasing Wavelength of 506.4 nm , 2009 .

[21]  M. Grant Norton,et al.  Optical properties of ZnO and MgZnO nanocrystals below and at the phase separation range , 2008 .

[22]  Takashi Mukai,et al.  Polarization switching phenomena in semipolar InxGa1-xN/GaN quantum well active layers , 2008 .

[23]  S. Denbaars,et al.  Stimulated Emission at Blue-Green (480 nm) and Green (514 nm) Wavelengths from Nonpolar (m-plane) and Semipolar (1122) InGaN Multiple Quantum Well Laser Diode Structures , 2008 .

[24]  H. Ohta,et al.  Anisotropic optical gain in m-plane InxGa1−xN/GaN multiple quantum well laser diode wafers fabricated on the low defect density freestanding GaN substrates , 2008 .

[25]  Hirofumi Kan,et al.  A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode , 2008 .

[26]  James S. Speck,et al.  Demonstration of 426 nm InGaN/GaN Laser Diodes Fabricated on Free-Standing Semipolar (1122) Gallium Nitride Substrates , 2008 .

[27]  Masashi Kubota,et al.  High-Efficiency Continuous-Wave Operation of Blue-Green Laser Diodes Based on Nonpolar m-Plane Gallium Nitride , 2008 .

[28]  James S. Speck,et al.  Optical properties of yellow light-emitting diodes grown on semipolar (112¯2) bulk GaN substrates , 2008 .

[29]  Martin Feneberg,et al.  Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide , 2008 .

[30]  Masataka Ohta,et al.  Blue Laser Diodes Fabricated on m-Plane GaN Substrates , 2008 .

[31]  Masashi Kubota,et al.  Temperature dependence of polarized photoluminescence from nonpolar m-plane InGaN multiple quantum wells for blue laser diodes , 2008 .

[32]  M. Scheffler,et al.  Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN , 2008, 0801.0421.

[33]  James S. Speck,et al.  Impacts of dislocation bending and impurity incorporation on the local cathodoluminescence spectra of GaN grown by ammonothermal method , 2007 .

[34]  J. Huso,et al.  The properties of ZnO photoluminescence at and above room temperature , 2007 .

[35]  Masashi Kubota,et al.  Quantum-confined Stark effects in the m-plane In0.15Ga0.85N∕GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate , 2007 .

[36]  Hiroaki Ohta,et al.  Characteristics of Polarized Electroluminescence from m-plane InGaN-based Light Emitting Diodes , 2007 .

[37]  H. Ohta,et al.  Temperature dependence of polarized electroluminescence from nonpolar m-plane InGaN-based light emitting diodes , 2007 .

[38]  S. Lau,et al.  Edge-Emitting Vertically Aligned ZnO Nanorods Random Laser on Plastic Substrate , 2007, IEEE Photonics Technology Letters.

[39]  S. Denbaars,et al.  High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate , 2007 .

[40]  M. G. Norton,et al.  Low temperature LO-phonon dynamics of MgZnO nanoalloys , 2007 .

[41]  Masashi Kubota,et al.  Pure Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride with InGaN Waveguiding Layers , 2007 .

[42]  A. Yamaguchi Anisotropic Optical Matrix Elements in Strained GaN Quantum Wells on Semipolar and Nonpolar Substrates , 2007 .

[43]  S. Nakamura,et al.  A GaN bulk crystal with improved structural quality grown by the ammonothermal method. , 2007, Nature materials.

[44]  J. Temmyo,et al.  Full-color electroluminescence from ZnO-based heterojunction diodes , 2007 .

[45]  Hiroaki Ohta,et al.  Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes , 2007 .

[46]  Mathew C. Schmidt,et al.  Demonstration of Nonpolar m-Plane InGaN/GaN Laser Diodes , 2007 .

[47]  S. Denbaars,et al.  High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (101̄1̄) Bulk GaN Substrates , 2007 .

[48]  Seoung-Hwan Park,et al.  Depolarization effects in (112¯2)-oriented InGaN∕GaN quantum well structures , 2007 .

[49]  Masashi Kubota,et al.  Continuous-Wave Operation of Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride , 2007 .

[50]  P. Heremans Semiconductor electronics: Organic crystals at large , 2006, Nature.

[51]  H. Ohta,et al.  Dislocation-Free m-Plane InGaN/GaN Light-Emitting Diodes on m-Plane GaN Single Crystals , 2006 .

[52]  T. Zheleva,et al.  Pressure response of the ultraviolet photoluminescence of ZnO and MgZnO nanocrystallites , 2006 .

[53]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[54]  M. Ghosh,et al.  Structural and optical properties of Zn1-xMgxO nanocrystals obtained by low temperature method , 2006, 1109.2250.

[55]  Hsin-Ming Cheng,et al.  Band gap engineering and stimulated emission of ZnMgO nanowires , 2006 .

[56]  T. Mukai,et al.  Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates , 2006 .

[57]  M. Schubert,et al.  Infrared optical properties of MgxZn1-xO thin films (0≤x≤1) : Long-wavelength optical phonons and dielectric constants , 2006 .

[58]  K. Thonke,et al.  Au-catalyzed growth processes and luminescence properties of ZnO nanopillars on Si , 2006 .

[59]  J. Huso,et al.  Dynamics of GaN band edge photoluminescence at near-room-temperature regime , 2006 .

[60]  K. Chattopadhyay,et al.  Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique , 2006 .

[61]  T. Zheleva,et al.  Ultraviolet-Photoluminescence and Raman Properties of MgxZn1-xO Nanopowders^* , 2006 .

[62]  R. Laskowski,et al.  Ab initio calculation of excitons in ZnO , 2006 .

[63]  J. Huso,et al.  Raman scattering of polar modes of ZnO crystallites , 2005 .

[64]  S. Denbaars,et al.  Polarized Light Emission from Nonpolar InGaN Light-Emitting Diodes Grown on a Bulk m-Plane GaN Substrate , 2005 .

[65]  M. Asif Khan,et al.  III–Nitride UV Devices , 2005 .

[66]  Takashi Mukai,et al.  Confocal microphotoluminescence of InGaN-based light-emitting diodes , 2005 .

[67]  T. Hanada,et al.  Structural variation of cubic and hexagonal MgxZn1−xO layers grown on MgO(111)∕c-sapphire , 2005 .

[68]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[69]  Laddawan Miko,et al.  Development of ultra-high sensitivity wide-band gap UV-EUV detectors at NASA Goddard Space Flight Center , 2005, SPIE Optics + Photonics.

[70]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[71]  San-Yuan Chen,et al.  Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates , 2005 .

[72]  D. Look,et al.  Study of the Photoluminescence of Phosphorus-Doped p-Type ZnO Thin Films Grown by Radio-Frequency Magnetron Sputtering , 2005 .

[73]  A. Waag,et al.  Pressure-dependent photoluminescence study of ZnO nanowires , 2005 .

[74]  S. Pearton,et al.  Development of MgZnO-ZnO-AlGaN heterostructures for ultraviolet light emitting applications , 2005 .

[75]  H. Morkoç,et al.  Luminescence properties of defects in GaN , 2005 .

[76]  E. Fortunato,et al.  Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature , 2005 .

[77]  Clement Yuen,et al.  Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer , 2005 .

[78]  C. Schlegel,et al.  Vertical nanowire light-emitting diode , 2004 .

[79]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[80]  H. Morkoç,et al.  Excitonic fine structure and recombination dynamics in single-crystalline ZnO , 2004 .

[81]  Toshiki Makimoto,et al.  High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers , 2004 .

[82]  K. H. Kim,et al.  Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing , 2004 .

[83]  Zhifu Liu,et al.  Blueshift of near band edge emission in Mg doped ZnO thin films and aging , 2004 .

[84]  S. Denbaars,et al.  Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening , 2004 .

[85]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[86]  Akio Sasaki,et al.  Radiative carrier recombination dependent on temperature and well width of InGaN/GaN single quantum well , 2004 .

[87]  Akio Yamamoto,et al.  Indium nitride (InN): A review on growth, characterization, and properties , 2003 .

[88]  Wladek Walukiewicz,et al.  Universal bandgap bowing in group III nitride alloys , 2003 .

[89]  M. J. Herrera-Cabrera,et al.  Optical properties and electronic structure of rock-salt ZnO under pressure , 2003 .

[90]  T. S. Lee,et al.  Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition , 2003 .

[91]  S. Denbaars,et al.  Stimulated emission and ultrafast carrier relaxation in InGaN multiple quantum wells , 2002, cond-mat/0210343.

[92]  R. Meulenberg,et al.  Pressure-induced electronic coupling in CdSe semiconductor quantum dots , 2002 .

[93]  James S. Speck,et al.  Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire , 2002 .

[94]  A. Kavokin,et al.  ZnO as a material mostly adapted for the realization of room-temperature polariton lasers , 2002 .

[95]  T. Venkatesan,et al.  Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films , 2002 .

[96]  Oliver Brandt,et al.  Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy , 2002 .

[97]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[98]  Hongxing Jiang,et al.  Linewidths of excitonic luminescence transitions in AlGaN alloys , 2001 .

[99]  Takashi Mukai,et al.  Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes , 2000 .

[100]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[101]  S. Bedair,et al.  Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures , 2000 .

[102]  Bruce W. Wessels,et al.  Investigation of the formation of the 2.8 eV luminescence band in p-type GaN:Mg , 2000 .

[103]  Shuji Nakamura,et al.  Time-resolved photoluminescence spectroscopy in GaN-based semiconductors with micron spatial resolution , 2000 .

[104]  L. Grenouillet,et al.  Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well , 2000 .

[105]  J. Jiang,et al.  Structural stability in nanocrystalline ZnO , 2000 .

[106]  R. Merlin,et al.  Raman scattering in materials science , 2000 .

[107]  John F. Muth,et al.  Optical and Structural Properties of Epitaxial MgxZn1-xO Alloys , 1999 .

[108]  Robert P. H. Chang,et al.  Effect of external feedback on lasing in random media , 1999 .

[109]  A. Zunger,et al.  Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends , 1999 .

[110]  S. Nakamura,et al.  Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes , 1999 .

[111]  John E. Bowers,et al.  Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth , 1999 .

[112]  Kazumi Wada,et al.  Exciton localization in InGaN quantum well devices , 1998 .

[113]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[114]  Michael Kunzer,et al.  Nature of the 2.8 eV photoluminescence band in Mg doped GaN , 1998 .

[115]  Michael G. Spencer,et al.  Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices , 1998 .

[116]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[117]  Masahiko Sano,et al.  InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .

[118]  Oliver Ambacher,et al.  Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films , 1997 .

[119]  Shuji Nakamura,et al.  Luminescences from localized states in InGaN epilayers , 1997 .

[120]  D. Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997, cond-mat/9705105.

[121]  Shuji Nakamura,et al.  Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours , 1997 .

[122]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[123]  S. Nakamura,et al.  Effects of biaxial strain on exciton resonance energies of hexagonal GaN heteroepitaxial layers , 1996 .

[124]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[125]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[126]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[127]  Takashi Mukai,et al.  Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes , 1995 .

[128]  Shuji Nakamura,et al.  High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes , 1995 .

[129]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[130]  Klaus Reimann,et al.  Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure , 1995 .

[131]  S. Tolbert,et al.  The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure , 1995 .

[132]  S. Tolbert,et al.  Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.

[133]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[134]  S. Nakamura,et al.  Thermal Annealing Effects on P-Type Mg-Doped GaN Films , 1992 .

[135]  S. Nakamura,et al.  Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .

[136]  Shuji Nakamura,et al.  GaN Growth Using GaN Buffer Layer , 1991 .

[137]  R. W. Major,et al.  Polarization currents in varistors , 1990 .

[138]  Stergios Logothetidis,et al.  Temperature dependence of the dielectric function of germanium , 1984 .

[139]  H. Queisser,et al.  Alloy broadening in photoluminescence spectra ofAlxGa1−xAs , 1984 .

[140]  D. Huffman,et al.  Use of smoke samples in diamond-anvil cells to measure pressure dependence of optical spectra: Application to the ZnO exciton , 1982 .

[141]  T. Gupta,et al.  Microstructural evaluation of multicomponent ZnO ceramics , 1979 .

[142]  W. C. Walker,et al.  Exciton thermoreflectance of MgO and CaO , 1973 .

[143]  Denis L. Rousseau,et al.  First-Order Raman Effect in Wurtzite-Type Crystals , 1969 .

[144]  H. Ibach Thermal Expansion of Silicon and Zinc Oxide (II) , 1969 .

[145]  W. Y. Liang,et al.  Transmission Spectra of ZnO Single Crystals , 1968 .

[146]  D. C. Reynolds,et al.  Exciton Spectrum of ZnO , 1966 .

[147]  E. Segnit,et al.  The System MgO‐ZnO‐SiO2 , 1965 .

[148]  Y. Araki Thermal expansion coefficient of polytetrafluoroethylene in the vicinity of its glass transition at about 400°K , 1965 .

[149]  Peter D. Johnson Some Optical Properties of MgO in the Vacuum Ultraviolet , 1954 .