Determining Subparsec Supermassive Black Hole Binary Orbits with Infrared Interferometry

Radial-velocity monitoring has revealed the presence of moving broad emission lines in some quasars, potentially indicating the presence of a subparsec binary system. Phase-referenced, near-infrared interferometric observations could map out the binary orbit by measuring the photocenter difference between a broad emission line and the hot dust continuum. We show that astrometric data over several years may be able to detect proper motions and accelerations, confirming the presence of a binary and constraining system parameters. The brightness, redshifts, and astrometric sizes of current candidates are well matched to the capabilities of the upgraded Very Large Telescope Interferometer/GRAVITY+ instrument, and we identify a first sample of 10 possible candidates. The astrometric signature depends on the morphology and evolution of hot dust emission in supermassive black hole binary systems. Measurements of the photocenter offset may reveal binary motion whether the hot dust emission region is fixed to the inner edge of the circumbinary disk, or moves in response to the changing irradiation pattern from an accreting secondary black hole.

[1]  L. Popović,et al.  Differential interferometry of close binary of supermassive black holes in an elliptical configuration , 2020 .

[2]  G. Perrin,et al.  The spatially resolved broad line region of IRAS 09149−6206 , 2020, Astronomy & Astrophysics.

[3]  J. Zrake,et al.  Circumbinary Disks: Accretion and Torque as a Function of Mass Ratio and Disk Viscosity , 2019, The Astrophysical Journal.

[4]  G. Perrin,et al.  The resolved size and structure of hot dust in the immediate vicinity of AGN , 2019, Astronomy & Astrophysics.

[5]  T. Boroson,et al.  Emission Signatures from Subparsec Binary Supermassive Black Holes. III. Comparison of Models with Observations , 2019, The Astrophysical Journal.

[6]  Yan-Rong Li,et al.  Differential Interferometric Signatures of Close Binaries of Supermassive Black Holes in Active Galactic Nuclei , 2019, The Astrophysical Journal.

[7]  D. Lai,et al.  Hydrodynamics of Circumbinary Accretion: Angular Momentum Transfer and Binary Orbital Evolution , 2018, The Astrophysical Journal.

[8]  A. Loeb,et al.  Detecting the orbital motion of nearby supermassive black hole binaries with Gaia , 2018, Physical Review D.

[9]  Yue Shen,et al.  Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy – III. Candidates from continued radial velocity tests , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  G. Collaboration Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale , 2018 .

[11]  M. Campanelli,et al.  Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger , 2017, 1712.05451.

[12]  Jeffrey D. Crane,et al.  SDSS-V: Pioneering Panoptic Spectroscopy , 2017, 1711.03234.

[13]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[14]  Z. Haiman,et al.  Lighthouse in the dust: infrared echoes of periodic emission from massive black hole binaries★ , 2017, 1702.01219.

[15]  S. Djorgovski,et al.  A possible close supermassive black-hole binary in a quasar with optical periodicity , 2015, Nature.

[16]  T. Boroson,et al.  A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES. II. CONTINUED SPECTROSCOPIC MONITORING AND OPTICAL FLUX VARIABILITY , 2015 .

[17]  O. Kurtanidze,et al.  OPTICAL MONITORING OF TWO BRIGHTEST NEARBY QUASARS, PHL 1811 AND 3C 273 , 2014 .

[18]  S. Lafrasse,et al.  ASPRO 2: Astronomical Software to PRepare Observations , 2013 .

[19]  D. Hogg,et al.  The nature of massive black hole binary candidates – I. Spectral properties and evolution , 2013, 1305.4941.

[20]  X. Siemens,et al.  The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.

[21]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[22]  A. MacFadyen,et al.  Accretion into the central cavity of a circumbinary disc , 2012, 1210.0536.

[23]  Yue Shen ASTROMETRIC REVERBERATION MAPPING , 2012, 1208.0868.

[24]  Y. Zlochower,et al.  CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES , 2012, 1204.1073.

[25]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[26]  T. Boroson,et al.  A Large Systematic Search for Recoiling and Close Supermassive Binary Black Holes , 2011, 1106.2952.

[27]  Gerd Weigelt,et al.  The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer , 2010, 1012.5359.

[28]  Yue Shen,et al.  IDENTIFYING SUPERMASSIVE BLACK HOLE BINARIES WITH BROAD EMISSION LINE DIAGNOSIS , 2009, 0912.0541.

[29]  J. Newman,et al.  INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS , 2008, 0810.3235.

[30]  P. Armitage,et al.  Massive black hole binary mergers within subparsec scale gas discs , 2008, 0809.0311.

[31]  G. Weigelt,et al.  The innermost region of AGN tori: implications from the HST/NICMOS type 1 point sources and near-IR reverberation , 2007, 0709.0431.

[32]  M. Eracleous,et al.  Modeling of Emission Signatures of Massive Black Hole Binaries. I. Methods , 2007, 0708.0414.

[33]  National Radio Astronomy Observatory,et al.  A Compact Supermassive Binary Black Hole System , 2006, astro-ph/0604042.

[34]  B. Peterson,et al.  Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies , 2005, astro-ph/0511697.

[35]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[36]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[37]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[38]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.

[39]  J. Newman,et al.  Rejection of the Binary Broad-Line Region Interpretation of Double-peaked Emission Lines in Three Active Galactic Nuclei , 1997, astro-ph/9706222.

[40]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[41]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[42]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[43]  B. C. Carlson Computing elliptic integrals by duplication , 1979 .