Enhancing promoting effects in g-C3N4-Mn+/CeO2-TiO2 ternary composites: Photo-handling of charge carriers

[1]  Xiaojing Li,et al.  Role of CeO2 as oxygen promoter in the accelerated photocatalytic degradation of phenol over rutile TiO2 , 2015 .

[2]  M. Fernández-García,et al.  Promotion of CeO2–TiO2 photoactivity by g-C3N4: Ultraviolet and visible light elimination of toluene , 2015 .

[3]  B. Li,et al.  Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2 , 2015 .

[4]  M. Fernández-García,et al.  Ceria promotion of acetaldehyde photo-oxidation in a TiO2-based catalyst: a spectroscopic and kinetic study , 2015 .

[5]  Zhongyi Jiang,et al.  Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation , 2015 .

[6]  M. Fernández-García,et al.  Effective Enhancement of TiO2 Photocatalysis by Synergistic Interaction of Surface Species: From Promoters to Co-catalysts , 2014 .

[7]  M. Fernández-García,et al.  Acetaldehyde degradation under UV and Visible irradiation using CeO2-TiO2 composite systems: Evaluation of the photocatalytic efficiencies , 2014 .

[8]  Yajun Wang,et al.  Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO , 2014 .

[9]  G. Dong,et al.  A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties , 2014 .

[10]  F. Chang,et al.  Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4–TiO2 hybrids , 2014 .

[11]  M. Fernández-García,et al.  Abatement of organics and Escherichia coli using CeO2-TiO2 composite oxides: Ultraviolet and visible light performances , 2014 .

[12]  M. Fernández-García,et al.  Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene , 2014 .

[13]  S. Yin,et al.  Facile fabrication and enhanced photosensitized degradation performance of the g-C3N4-Bi2O2CO3 composite. , 2014, Dalton transactions.

[14]  Toshiki Tsubota,et al.  Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible-light irradiation , 2014 .

[15]  H. Eskandarloo,et al.  TiO2/CeO2 Hybrid Photocatalyst with Enhanced Photocatalytic Activity: Optimization of Synthesis Variables , 2014 .

[16]  Jie Huang,et al.  Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method , 2014 .

[17]  T. Savenije,et al.  Mechanisms of Photogeneration and Relaxation of Excitons and Mobile Carriers in Anatase TiO2 , 2014 .

[18]  S. Phanichphant,et al.  Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. , 2014, Journal of colloid and interface science.

[19]  Yanting Li,et al.  Ce-doped SiO2@TiO2 nanocomposite as an effective visible light photocatalyst , 2014 .

[20]  Shengping Wang,et al.  Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties , 2014 .

[21]  Liejin Guo,et al.  Heterojunctions in g-C3N4/TiO2(B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity , 2014 .

[22]  Gang Wang,et al.  Progress on extending the light absorption spectra of photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[23]  M. Fernández-García,et al.  Role of interface contact in CeO2-TiO2 photocatalytic composite materials , 2014 .

[24]  S. Obregón,et al.  Improved H2 production of Pt-TiO2/g-C3N4-MnOx composites by an efficient handling of photogenerated charge pairs , 2014 .

[25]  M. Fernández-García,et al.  Green photo-oxidation of styrene over W-Ti composite catalysts , 2014 .

[26]  Fa‐tang Li,et al.  In Situ Microwave-Assisted Synthesis of Porous N-TiO2/g-C3N4 Heterojunctions with Enhanced Visible-Light Photocatalytic Properties , 2013 .

[27]  W. Zhou,et al.  Surface tuning for oxide-based nanomaterials as efficient photocatalysts. , 2013, Chemical Society reviews.

[28]  T. Park,et al.  Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants , 2013 .

[29]  C. Karunakaran,et al.  Solvothermal Synthesis of CeO2–TiO2 Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide , 2013 .

[30]  Jiaguo Yu,et al.  Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. , 2013, Physical chemistry chemical physics : PCCP.

[31]  A. Ismail,et al.  Synthesis of mesoporous ceria/titania thin films for self-cleaning applications. , 2013, Journal of colloid and interface science.

[32]  M. Fernández-García,et al.  Sunlight-driven toluene photo-elimination using CeO2-TiO2 composite systems: A kinetic study , 2013 .

[33]  P. Fang,et al.  Study on enhanced photocatalytic performance of cerium doped TiO2-based nanosheets , 2013 .

[34]  B. Li,et al.  Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation , 2013 .

[35]  G. L. Puma,et al.  Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method , 2013 .

[36]  C. Miranda,et al.  Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method , 2013 .

[37]  Jun Wang,et al.  Spectroscopic analyses on ROS generation catalyzed by TiO2, CeO2/TiO2 and Fe2O3/TiO2 under ultrasonic and visible-light irradiation. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[38]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[39]  Yong Wang,et al.  Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light , 2011 .

[40]  Ping Liu,et al.  Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis , 2011 .

[41]  Hongjian Yan,et al.  TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation , 2011 .

[42]  Avelino Corma,et al.  Titania supported gold nanoparticles as photocatalyst. , 2011, Physical chemistry chemical physics : PCCP.

[43]  Yinchang Feng,et al.  Improved catalytic capability of mesoporous TiO2 microspheres and photodecomposition of toluene. , 2010, ACS applied materials & interfaces.

[44]  K. Hashimoto,et al.  An Efficient Visible-Light-Sensitive Fe(III)-Grafted TiO2 Photocatalyst , 2010 .

[45]  Hjh Jos Brouwers,et al.  Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinetic study , 2010 .

[46]  Xiuli Wang,et al.  Trap states and carrier dynamics of TiO(2) studied by photoluminescence spectroscopy under weak excitation condition. , 2010, Physical chemistry chemical physics : PCCP.

[47]  M. Fernández-García,et al.  N- and/or W-(co)doped TiO2-anatase catalysts: Effect of the calcination treatment on photoactivity , 2010 .

[48]  W. Anderson,et al.  A finite model for the prediction of the UV radiation field around a linear lamp , 2010 .

[49]  M. Fernández-García,et al.  Doping level effect on sunlight-driven W,N-co-doped TiO2-anatase photo-catalysts for aromatic hydrocarbon partial oxidation , 2010 .

[50]  J. Zhang,et al.  Optical properties and applications of hybrid semiconductor nanomaterials , 2009 .

[51]  M. Fernández-García,et al.  Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2 , 2009 .

[52]  Yinping Zhang,et al.  Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene , 2009 .

[53]  M. Fernández-García,et al.  Cationic (V, Mo, Nb, W) doping of TiO2–anatase: A real alternative for visible light-driven photocatalysts , 2009 .

[54]  T. Tachikawa,et al.  Exploring the spatial distribution and transport behavior of charge carriers in a single titania nanowire. , 2009, Journal of the American Chemical Society.

[55]  Jimmy C. Yu,et al.  Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts. , 2009, Physical chemistry chemical physics : PCCP.

[56]  G. Mul,et al.  Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts. , 2009, Physical chemistry chemical physics : PCCP.

[57]  N. Murafa,et al.  Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles , 2009 .

[58]  Gianfranco Pacchioni,et al.  Nature of Ti Interstitials in Reduced Bulk Anatase and Rutile TiO2 , 2009 .

[59]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[60]  Baozhu Tian,et al.  Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. , 2007, Journal of colloid and interface science.

[61]  T. Savenije,et al.  Effect of the particle size on the electron injection efficiency in dye-sensitized nanocrystalline TiO2 films studied by time-resolved microwave conductivity (TRMC) measurements , 2007 .

[62]  H. Irazoqui,et al.  Modeling of a multiannular photocatalytic reactor for perchloroethylene degradation in air , 2006 .

[63]  S. Yoshikawa,et al.  Preparation and characterization of mesoporous TiO2–CeO2 nanopowders respond to visible wavelength , 2005 .

[64]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[65]  M. Fernández-García,et al.  Confinement effects in quasi-stoichiometric CeO2 nanoparticles , 2004 .

[66]  M. Fernández-García,et al.  EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation , 2004 .

[67]  T. Savenije,et al.  Electrodeless determination of the trap density, decay kinetics, and charge separation efficiency of dye-sensitized nanocrystalline TiO(2). , 2004, Journal of the American Chemical Society.

[68]  M. Fernández-García,et al.  Nanosize Ti–W Mixed Oxides: Effect of Doping Level in the Photocatalytic Degradation of Toluene Using Sunlight-Type Excitation , 2002 .

[69]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[70]  P. G. de Gennes,et al.  Microemulsions and the flexibility of oil/water interfaces , 1982 .

[71]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .

[72]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .