C29 Olefinic Hydrocarbons Biosynthesized by Arthrobacter Species

ABSTRACT Arthrobacter aurescens TC1, Arthrobacter chlorophenolicus A6, Arthrobacter crystallopoietes, and Arthrobacter oxydans produce long-chain monoalkenes, predominantly cis-3,25-dimethyl-13-heptacosene. Four other Arthrobacter strains did not form alkenes. The level of cis-3,25-dimethyl-13-heptacosene in Arthrobacter chlorophenolicus A6 remained proportional to cell mass during growth. cis-3,25-Dimethyl-13-heptacosene did not support growth of A. chlorophenolicus A6.

[1]  Avelino Corma,et al.  Synergies between bio- and oil refineries for the production of fuels from biomass. , 2007, Angewandte Chemie.

[2]  P. Albro,et al.  The biochemistry of long-chain, nonisoprenoid hydrocarbons. 3. The metabolic relationship of long-chain fatty acids and hydrocarbons and other aspects of hydrocarbon metabolism in Sarcina lutea. , 1969, Biochemistry.

[3]  L. Wackett Microbial‐based motor fuels: science and technology , 2008, Microbial biotechnology.

[4]  K. Schleifer,et al.  Isolation and Characterization of Micrococci From Human Skin, Including Two New Species: Micrococcus lylae and Micrococcus kristinae1 , 1974 .

[5]  H. Heipieper,et al.  Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. , 2007, FEMS microbiology letters.

[6]  Fred Beasley,et al.  Comparative analysis of eight Arthrobacter plasmids. , 2008, Plasmid.

[7]  T. Tornabene,et al.  Biosynthesis of acyclic methyl branched polyunsaturated hydrocarbons inPseudomonas maltophilia , 2005, Journal of Industrial Microbiology.

[8]  Timothy S. Ham,et al.  Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. , 2008, Current opinion in biotechnology.

[9]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[10]  J. Oró,et al.  Fatty Acid and Aliphatic Hydrocarbon Composition of Sarcina lutea Grown in Three Different Media , 1967, Journal of bacteriology.

[11]  Lawrence P. Wackett,et al.  Genomic and Biochemical Studies Demonstrating the Absence of an Alkane-Producing Phenotype in Vibrio furnissii M1 , 2007, Applied and Environmental Microbiology.

[12]  M. Dworkin Archaea. Bacteria: firmicutes, actinomycetes , 2006 .

[13]  P. Albro,et al.  The biochemistry of long-chain, nonisoprenoid hydrocarbons. I. Characterization of the hydrocarbons of Sarcina lutea and the isolation of possible intermediates of biosynthesis. , 1969, Biochemistry.

[14]  S. Markey,et al.  Characterization of branched monounsaturated hydrocarbons ofSarcina lutea andSarcina flava , 1971, Lipids.

[15]  Dorothy Jones,et al.  The Genus Arthrobacter , 2006 .

[16]  Peterson Sl,et al.  Pseudomonas maltophilia: identification of the hydrocarbons, glycerides, and glycolipoproteins of cellular lipids. , 1978 .

[17]  P. Albro,et al.  LIPIDS OF SARCINA LUTEA. II. HYDROCARBON CONTENT OF THE LIPID EXTRACTS. , 1964, Journal of bacteriology.

[18]  D. Radune,et al.  Secrets of Soil Survival Revealed by the Genome Sequence of Arthrobacter aurescens TC1 , 2006, PLoS genetics.

[19]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.

[20]  L. Wackett,et al.  Arthrobacter aurescens TC1 Metabolizes Diverse s-Triazine Ring Compounds , 2002, Applied and Environmental Microbiology.

[21]  J. Oró,et al.  Identification of Fatty Acids and Aliphatic Hydrocarbons in Sarcina lutea by Gas Chromatography and Combined Gas Chromatography-Mass Spectrometry , 1967, Journal of bacteriology.

[22]  P. Albro,et al.  The biochemistry of long-chain, nonisoprenoid hydrocarbons. IV. Characteristics of synthesis by a cell-free preparation of Sarcina lutea. , 1969, Biochemistry.

[23]  Cellular fatty acid composition of rod and coccus forms of Arthrobacter globiformis, A.crystallopoietes and A.nicotianae isolated from the water fern Azolla , 1998 .