Distinguishability of Discrete-Time Nonlinear Systems

This note considers the problem of identifying a discrete-time nonlinear system, within a finite family of possible models, from data sequences of a finite length. The problem is approached by resorting to the notion of output distinguishability. This amounts to asking whether output data sequences generated by different models can be distinguished from one another. A number of results are presented with examples. Connections with conditions for linear systems are established.

[1]  C. M. Agulhari,et al.  Robust ℋ∞ static output-feedback design for time-invariant discrete-time polytopic systems from parameter-dependent state-feedback gains , 2010, Proceedings of the 2010 American Control Conference.

[2]  Ricardo C. L. F. Oliveira,et al.  Static output feedback control of polytopic systems using polynomial Lyapunov functions , 2010, 49th IEEE Conference on Decision and Control (CDC).

[3]  Ricardo C. L. F. Oliveira,et al.  LMI Relaxations for Reduced-Order Robust ${\cal H}_{\infty}$ Control of Continuous-Time Uncertain Linear Systems , 2012, IEEE Transactions on Automatic Control.

[4]  Karl Henrik Johansson,et al.  Modeling of hybrid systems , 2004 .

[5]  R. Vidal,et al.  Observability and identifiability of jump linear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[6]  Giorgio Battistelli,et al.  Active mode observability of switching linear systems , 2007, Autom..

[7]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear systems using neural networks , 2008, 2008 47th IEEE Conference on Decision and Control.

[8]  Magnus Egerstedt,et al.  A direct algebraic approach to observer design under switching measurement equations , 2004, IEEE Transactions on Automatic Control.

[9]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[10]  Ricardo C. L. F. Oliveira,et al.  Robust ℋ︁2 static output feedback design starting from a parameter‐dependent state feedback controller for time‐invariant discrete‐time polytopic systems , 2011 .

[11]  S. Hara,et al.  Robust control synthesis with general frequency domain specifications: static gain feedback case , 2004, Proceedings of the 2004 American Control Conference.

[12]  Magnus Egerstedt,et al.  Observability of Switched Linear Systems , 2004, HSCC.

[13]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[14]  Giorgio Battistelli,et al.  Stabilization and tracking for switching linear systems under unknown switching sequences , 2013, Syst. Control. Lett..

[15]  S. Shankar Sastry,et al.  Observability of Linear Hybrid Systems , 2003, HSCC.

[16]  George J. Pappas,et al.  Observability of Switched Linear Systems in Continuous Time , 2005, HSCC.

[17]  Hongwei Lou,et al.  Conditions for distinguishability and observability of switched linear systems , 2011 .

[18]  Giorgio Battistelli,et al.  Receding-horizon estimation for switching discrete-time linear systems , 2005, IEEE Transactions on Automatic Control.

[19]  João Pedro Hespanha,et al.  Hybrid Modeling of TCP Congestion Control , 2001, HSCC.

[20]  Shinji Hara,et al.  Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma , 2007 .

[21]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2006 .

[22]  Giorgio Battistelli,et al.  Supervisory control of switched nonlinear systems , 2012 .

[23]  Huijun Gao,et al.  Robust finite frequency H∞ filtering for uncertain 2-D systems: The FM model case , 2013, Autom..

[24]  Shigeru Hanba,et al.  Further Results on the Uniform Observability of Discrete-Time Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.