The composition of the deep continental crust inferred from geochemical and geophysical data

Combing geochemical and seismological results constrains the composition of the middle and lower continental crust better than either field can achieve alone. The inaccessible nature of the deep cr...

[1]  W. McDonough,et al.  A Geochemical Review of Amphibolite, Granulite, and Eclogite Facies Lithologies: Perspectives on the Deep Continental Crust , 2021, Journal of Geophysical Research: Solid Earth.

[2]  A. Menzies,et al.  Heat production and moho temperatures in cratonic crust: evidence from lower crustal xenoliths from the slave craton , 2020 .

[3]  D. Wiens,et al.  A Geothermal Heat Flux Map of Antarctica Empirically Constrained by Seismic Structure , 2020, Geophysical Research Letters.

[4]  D. Green,et al.  Revisiting the Australian‐Antarctic Ocean‐Continent Transition Zone Using Petrological and Geophysical Characterization of Exhumed Subcontinental Mantle , 2020, Geochemistry, Geophysics, Geosystems.

[5]  W. McDonough,et al.  Lower Crustal Composition in the Southwestern United States , 2019, Journal of Geophysical Research: Solid Earth.

[6]  F. Lucazeau,et al.  Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set , 2019, Geochemistry, Geophysics, Geosystems.

[7]  W. McDonough,et al.  Reference Models for Lithospheric Geoneutrino Signal , 2019, Journal of Geophysical Research: Solid Earth.

[8]  J. Afonso,et al.  Global Crustal Thickness and Velocity Structure From Geostatistical Analysis of Seismic Data , 2019, Journal of Geophysical Research: Solid Earth.

[9]  W. McDonough,et al.  Earth's chondritic Th/U: Negligible fractionation during accretion, core formation, and crust–mantle differentiation , 2018, Earth and Planetary Science Letters.

[10]  F. Cammarano,et al.  Global thermal models of the lithosphere , 2017 .

[11]  C. Jaupart,et al.  Radiogenic Heat Production in the Continental Crust , 2016, Encyclopedia of Solid Earth Geophysics.

[12]  A. J. Kaufman,et al.  Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites , 2016 .

[13]  N. Roberts,et al.  Using monazite and zircon petrochronology to constrain the P–T–t evolution of the middle crust in the Bhutan Himalaya , 2016 .

[14]  Thomas Richter,et al.  The Development and Evaluation of the Global Gravity Model GGM05 , 2016 .

[15]  C. Jaupart,et al.  The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective , 2014 .

[16]  J. Mareschal,et al.  Estimating concentrations of heat producing elements in the crust near the Sudbury Neutrino Observatory, Ontario, Canada , 2014 .

[17]  N. Simon,et al.  Inhibited eclogitization and consequences for geophysical rock properties and delamination models: Constraints from cratonic lower crustal xenoliths , 2014 .

[18]  H. P. Li,et al.  Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks , 2014, Journal of Thermal Analysis and Calorimetry.

[19]  C. Jaupart,et al.  Radiogenic heat production, thermal regime and evolution of continental crust , 2013 .

[20]  W. McDonough,et al.  A reference Earth model for the heat‐producing elements and associated geoneutrino flux , 2013, 1301.0365.

[21]  G. Masters,et al.  LITHO1.0 - An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints , 2012 .

[22]  M. Schmidt,et al.  The formation and bulk composition of modern juvenile continental crust: The Kohistan arc , 2012 .

[23]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[24]  J. Burg,et al.  The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc , 2011 .

[25]  M. Ducea Fingerprinting orogenic delamination , 2011 .

[26]  J. Lawrence,et al.  Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion , 2009 .

[27]  S. Peters,et al.  Global geologic maps are tectonic speedometers—Rates of rock cycling from area-age frequencies , 2009 .

[28]  M. Searle,et al.  Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms , 2009, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[29]  Irina M. Artemieva,et al.  Global 1°×1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution , 2006 .

[30]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[31]  Han‐joon Kim,et al.  Transition from rifted continental to oceanic crust at the southeastern Korean margin in the East Sea (Japan Sea) , 2004 .

[32]  G. Abers,et al.  Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature , 2004 .

[33]  Shenghong Hu,et al.  Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition , 2001 .

[34]  F. Schilling,et al.  Quantifying partial melt fraction in the crust beneath the central andes and the Tibetan plateau , 2001 .

[35]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[36]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[37]  I. Kukkonen,et al.  Low geothermal heat flow of the Urals fold belt — implication of low heat production, fluid circulation or palaeoclimate? , 1997 .

[38]  F. Schilling,et al.  Seismic, gravity and petrological evidence for partial melt beneath the thickened Central Andean crust (21–23°S) , 1997 .

[39]  Handong Tan,et al.  Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results , 1996, Science.

[40]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[41]  H. Pollack,et al.  A global analysis of heat flow from Precambrian terrains: Implications for the thermal structure of Archean and Proterozoic lithosphere , 1993 .

[42]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[43]  H. Shiobara,et al.  Oceanic crust in the Japan Basin of the Japan Sea by the 1990 Japan-USSR Expedition , 1992 .

[44]  S. Kelley,et al.  Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements , 1987 .

[45]  C. Jaupart,et al.  The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: Geothermal implications , 1987 .

[46]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[47]  J. Hartmann,et al.  The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust , 2011, International Journal of Earth Sciences.

[48]  R. Arculus,et al.  Continental lower crust , 1992 .

[49]  P. Barrett,et al.  Antarctica ’ s Continent-Ocean Transitions : Consequences for Tectonic Reconstructions , 2022 .