Molecular mechanisms of cholestasis

ZusammenfassungIn den letzten Jahren hat sich unser Verständnis der molekularen Mechanismen der Cholestase zunehmend vertieft. Mutationen einzelner Transportergene können angeborene Cholestasesyndrome verursachen, während bei erworbenen Cholestaseformen cholestatische Noxen (wie z. B. Medikamente, Hormone, inflammatorische Zytokine) zu einer veränderten Transporterexpression und -funktion führen. Diese Veränderungen können einerseits die Cholestase verstärken, andererseits werden so hepatoprotektive Mechanismen aktiviert und eine alternative "retrograde" Gallensäureexkretion in die systemische Zirkulation begünstigt. Dies führt zu einer gesteigerten renalen Elimination toxischer gallepflichtiger Substanzen (z. B. Gallensäuren, Bilirubin) bei Cholestase. Zusätzlich werden Gallensäuren in der Leber vermehrt entgiftet. So machen Hydroxylierung, Sulfatierung und Glucuronidierung Gallensäuren hydrophiler und damit weniger toxisch. Diese molekularen Mechanismen werden durch die Wirkung von Kernrezeptoren vermittelt. Die Aktivität dieser Rezeptoren selbst wird durch Gallensäuren, inflammatorische Zytokine, Medikamente und Hormone reguliert. Zusätzlich zu den transkriptionellen Veränderungen, werden auch ein verminderter Einbau und gesteigerter Ausbau von Transporterprotein aus der Zellmembran beobachtet. Störungen der Zellpolarität, des Zytoskeletts und der Zellkontakte sind ebenso involviert. Das genaue Verständnis dieser molekularen Veränderungen sollte es uns in Zukunft ermöglichen, neue Therapieansätze für cholestatische Lebererkrankungen zu entwickeln. Diese Therapieformen könnten darauf abzielen, eine gestörte Transporterexpression wiederherzustellen und die hepatischen Verteidigungsmechanismen gegen toxische Gallensäuren weiter zu stimulieren.SummaryRecent progress has enhanced our understanding of the pathogenesis of cholestatic liver diseases. Mutations in genes encoding for hepatobiliary transport systems can cause hereditary cholestatic syndromes and exposure to cholestatic agents (drugs, hormones, inflammatory cytokines) can lead to reduced expression and function of hepatic uptake and excretory systems in acquired forms of cholestasis. In addition to transporter changes which cause or maintain cholestasis, some alterations in transporter gene expression can be viewed as hepatoprotective mechanisms aimed at reducing intrahepatic accumulation of toxic biliary constituents such as bile acids and bilirubin. Alternative excretion of bile acids via the basolateral membrane into the systemic circulation facilitates the renal elimination of bile acids into urine. Moreover, increased bile acid hydroxylation, sulfation and glucuronidation by phase I and II metabolizing enzymes renders bile acids more hydrophilic and less toxic. These molecular changes are mediated by specific nuclear receptors which are regulated by bile acids, proinflammatory cytokines, drugs, and hormones. In addition to transcriptional changes, reduced transporter protein insertion to or increased retrieval from the cell membrane as well as other mechanisms such as altered cell polarity, disruption of cell-to-cell junctions and cytoskeletal changes are involved in the pathogenesis of cholestasis. Understanding the detailed mechanisms regulating expression of transport systems and enzymes is essential for the development of novel therapeutic agents. Such future approaches could specifically target nuclear receptors thus restoring defective transporter expression and supporting hepatic defense mechanisms against toxic bile acids.

[1]  F. Dombrowski,et al.  Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver , 2006, Laboratory Investigation.

[2]  W. Balistreri Inborn errors of bile acid biosynthesis and transport. Novel forms of metabolic liver disease. , 1999, Gastroenterology clinics of North America.

[3]  U. Beuers,et al.  Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. , 2004, Clinics in liver disease.

[4]  P. Meier,et al.  Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. , 2000, Gastroenterology.

[5]  U. Beuers,et al.  Ursodeoxycholic acid in cholestatic liver disease: Mechanisms of action and therapeutic use revisited , 2002, Hepatology.

[6]  J. Boyer,et al.  Phenobarbital Effects in Cholestatic Liver Disease , 1975 .

[7]  S. Poucell,et al.  Mechanisms of cholestasis. , 1986, Laboratory investigation; a journal of technical methods and pathology.

[8]  P. Meier,et al.  Bile salt transporters. , 2002, Annual review of physiology.

[9]  F. Lammert,et al.  Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. , 2002, Gastroenterology.

[10]  J. Boyer,et al.  Phenobarbital effects in cholestatic liver diseases. , 1975, Annals of internal medicine.

[11]  L. Tsui,et al.  Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis , 2003, Human Genetics.

[12]  Richard J. Thompson,et al.  A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis , 1998, Nature Genetics.

[13]  R. Evans,et al.  Nuclear receptors and lipid physiology: opening the X-files. , 2001, Science.

[14]  T. Willson,et al.  Protective Effects of 6-Ethyl Chenodeoxycholic Acid, a Farnesoid X Receptor Ligand, in Estrogen-Induced Cholestasis , 2005, Journal of Pharmacology and Experimental Therapeutics.

[15]  K. Zatloukal,et al.  CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice , 2005, Hepatology.

[16]  P. Bosma,et al.  The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. , 2001, Gastroenterology.

[17]  J. Boyer,et al.  Molecular pathogenesis of cholestasis. , 2012, The New England journal of medicine.

[18]  P. Bosma,et al.  Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Zatloukal,et al.  Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. , 2003, Journal of hepatology.

[20]  N. Freimer,et al.  A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis , 1998, Nature Genetics.

[21]  M. Trauner,et al.  Review article: mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases , 1999, Alimentary pharmacology & therapeutics.

[22]  A. Morelli,et al.  The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. , 2004, Gastroenterology.

[23]  F. Villamil,et al.  Treatment of pruritus of primary biliary cirrhosis with rifampin , 1991, Digestive Diseases and Sciences.

[24]  H. Tilg,et al.  Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. , 2004, Gastroenterology.

[25]  A. Hofmann,et al.  Altered bile acid metabolism in primary biliary cirrhosis , 1981, Digestive Diseases and Sciences.

[26]  G. Kullak-Ublick,et al.  Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. , 2005, Archives of biochemistry and biophysics.

[27]  J. Boyer,et al.  Bile duct epithelium: frontiers in transport physiology. , 1996, The American journal of physiology.

[28]  K. Zatloukal,et al.  Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases , 2001, Hepatology.

[29]  G. P. van Berge Henegouwen,et al.  Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. , 1976, Gut.

[30]  S. Sahlin,et al.  Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. , 2005, Gastroenterology.

[31]  E. Sturm,et al.  Genes and cholestasis , 2001, Hepatology.

[32]  J. Boyer,et al.  Bile salt transporters: molecular characterization, function, and regulation. , 2003, Physiological reviews.

[33]  D. Keppler,et al.  Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C–dependent mechanisms in cholestatic rat liver , 2001, Hepatology.

[34]  D. Moore,et al.  A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. , 2004, The Journal of clinical investigation.

[35]  M. Kool,et al.  A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin‐Johnson syndrome , 1997, Hepatology.

[36]  E. Jacquemin Role of Multidrug Resistance 3 Deficiency in Pediatric and Adult Liver Disease: One Gene for Three Diseases , 2001, Seminars in liver disease.