RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death.

[1]  M. Benito,et al.  TSC2 N-terminal lysine acetylation status affects to its stability modulating mTORC1 signaling and autophagy. , 2016, Biochimica et biophysica acta.

[2]  D. Rubinsztein,et al.  The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway , 2016, Nature Communications.

[3]  N. Banik,et al.  RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma , 2016, Tumor Biology.

[4]  S. Mordon,et al.  Interstitial 5-ALA photodynamic therapy and glioblastoma: Preclinical model development and preliminary results. , 2016, Photodiagnosis and photodynamic therapy.

[5]  Michael R Hamblin,et al.  Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies , 2015, Cancer and Metastasis Reviews.

[6]  T. Mang,et al.  Photodynamic therapy (PDT) for malignant brain tumors--where do we stand? , 2015, Photodiagnosis and photodynamic therapy.

[7]  D. Stolz,et al.  RIP3 Regulates Autophagy and Promotes Coxsackievirus B3 Infection of Intestinal Epithelial Cells. , 2015, Cell host & microbe.

[8]  P. Agostinis,et al.  Autophagy, a major adaptation pathway shaping cancer cell death and anticancer immunity responses following photodynamic therapy , 2015, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[9]  Han-dong Wang,et al.  FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. , 2015, Toxicology letters.

[10]  J. Akimoto,et al.  Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells , 2015, Lasers in Medical Science.

[11]  Tetsuya Nakamura,et al.  RIPK3 regulates p62-LC3 complex formation via the caspase-8-dependent cleavage of p62. , 2015, Biochemical and biophysical research communications.

[12]  T. Vanden Berghe,et al.  Necroptosis, in vivo detection in experimental disease models. , 2014, Seminars in cell & developmental biology.

[13]  F. Mollinedo,et al.  Necroptosis is associated with low procaspase-8 and active RIPK1 and −3 in human glioma cells , 2014, Oncoscience.

[14]  M. Hefti,et al.  Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro , 2014, Neurological research.

[15]  G. Reifenberger,et al.  EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. , 2014, The Lancet. Oncology.

[16]  P. Vandenabeele,et al.  Regulated necrosis: the expanding network of non-apoptotic cell death pathways , 2014, Nature Reviews Molecular Cell Biology.

[17]  L. Deangelis,et al.  Glioblastoma and other malignant gliomas: a clinical review. , 2013, JAMA.

[18]  S. Fulda,et al.  Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes , 2013, Cell Death and Differentiation.

[19]  N. Banik,et al.  Photofrin Based Photodynamic Therapy and miR-99a Transfection Inhibited FGFR3 and PI3K/Akt Signaling Mechanisms to Control Growth of Human Glioblastoma In Vitro and In Vivo , 2013, PloS one.

[20]  M. Beppu,et al.  Photodynamic therapy in combination with talaporfin sodium induces mitochondrial apoptotic cell death accompanied with necrosis in glioma cells. , 2013, Biological & pharmaceutical bulletin.

[21]  Yuanyue Li,et al.  Investigation of Receptor interacting protein (RIP3)-dependent Protein Phosphorylation by Quantitative Phosphoproteomics* , 2012, Molecular & Cellular Proteomics.

[22]  Kenta Moriwaki,et al.  The RIP1/RIP3 Necrosome Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis , 2012, Cell.

[23]  R. Ralhan,et al.  14-3-3 zeta as novel molecular target for cancer therapy , 2012, Expert opinion on therapeutic targets.

[24]  P. Agostinis,et al.  5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[25]  Gregory Fettweis,et al.  RIP3 expression induces a death profile change in U2OS osteosarcoma cells after 5‐ALA‐PDT , 2011, Lasers in surgery and medicine.

[26]  Hong Lin,et al.  14-3-3Zeta Positive Expression is Associated With a Poor Prognosis in Patients With Glioblastoma , 2011, Neurosurgery.

[27]  Katsushi Inoue,et al.  Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. , 2011, International immunopharmacology.

[28]  P. Agostinis,et al.  NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy. , 2011, Biochemical pharmacology.

[29]  K. Aldape,et al.  NFKBIA deletion in glioblastomas. , 2011, The New England journal of medicine.

[30]  P. Agostinis,et al.  Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage , 2010, Journal of cellular and molecular medicine.

[31]  N. Oleinick,et al.  Atg7 deficiency increases resistance of MCF-7 human breast cancer cells to photodynamic therapy , 2010, Autophagy.

[32]  P. Yaswen,et al.  A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells , 2009, PloS one.

[33]  Na Zhang,et al.  RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis , 2009, Science.

[34]  L. Nutt,et al.  Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2. , 2009, Developmental cell.

[35]  Xiaodong Wang,et al.  Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-α , 2009, Cell.

[36]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[37]  Darell D. Bigner,et al.  Glioblastoma Multiforme Oncogenomics and Signaling Pathways , 2009, Clinical medicine. Oncology.

[38]  M. Sam Eljamel,et al.  ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial , 2008, Lasers in Medical Science.

[39]  B. Manning,et al.  The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. , 2008, The Biochemical journal.

[40]  D. Vertommen,et al.  Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis , 2008, Proceedings of the National Academy of Sciences.

[41]  Jochen Herms,et al.  Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report , 2008, Journal of Neuro-Oncology.

[42]  D. Kessel,et al.  Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[43]  David M Sabatini,et al.  Defining the role of mTOR in cancer. , 2007, Cancer cell.

[44]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[45]  N. Banik,et al.  5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells , 2007, Neuroscience Letters.

[46]  Y. Kajimoto,et al.  Massive apoptotic cell death of human glioma cells via a mitochondrial pathway following 5-aminolevulinic acid-mediated photodynamic therapy , 2007, Journal of Neuro-Oncology.

[47]  F. Zanella,et al.  Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. , 2006, The Lancet. Oncology.

[48]  Andrew H. Kaye,et al.  Photodynamic therapy of high grade glioma – long term survival , 2005, Journal of Clinical Neuroscience.

[49]  K. Inoki,et al.  The p38 and MK2 Kinase Cascade Phosphorylates Tuberin, the Tuberous Sclerosis 2 Gene Product, and Enhances Its Interaction with 14-3-3* , 2003, The Journal of Biological Chemistry.

[50]  Y. Xiong,et al.  14-3-3β Binds to and Negatively Regulates the Tuberous Sclerosis Complex 2 (TSC2) Tumor Suppressor Gene Product, Tuberin* , 2003, The Journal of Biological Chemistry.

[51]  K. Inoki,et al.  Regulation of TSC2 by 14-3-3 Binding* , 2002, The Journal of Biological Chemistry.

[52]  J. Blenis,et al.  Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. , 2002, Molecular cell.

[53]  E Ruoslahti,et al.  Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. , 1999, Biochemistry.

[54]  F. Schliess,et al.  Activation of JNK and p38 but not ERK MAP kinases in human skin cells by 5-aminolevulinate-photodynamic therapy. , 1998, Cancer research.

[55]  J. Yee,et al.  Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus , 1991, Journal of virology.

[56]  D. Louis,et al.  Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? , 2013, Nature Reviews Clinical Oncology.