ImMesh: An Immediate LiDAR Localization and Meshing Framework

In this paper, we propose a novel LiDAR(-inertial) odometry and mapping framework to achieve the goal of simultaneous localization and meshing in real-time. This proposed framework termed ImMesh comprises four tightly-coupled modules: receiver, localization, meshing, and broadcaster. The localization module utilizes the prepossessed sensor data from the receiver, estimates the sensor pose online by registering LiDAR scans to maps, and dynamically grows the map. Then, our meshing module takes the registered LiDAR scan for incrementally reconstructing the triangle mesh on the fly. Finally, the real-time odometry, map, and mesh are published via our broadcaster. The key contribution of this work is the meshing module, which represents a scene by an efficient hierarchical voxels structure, performs fast finding of voxels observed by new scans, and reconstructs triangle facets in each voxel in an incremental manner. This voxel-wise meshing operation is delicately designed for the purpose of efficiency; it first performs a dimension reduction by projecting 3D points to a 2D local plane contained in the voxel, and then executes the meshing operation with pull, commit and push steps for incremental reconstruction of triangle facets. To the best of our knowledge, this is the first work in literature that can reconstruct online the triangle mesh of large-scale scenes, just relying on a standard CPU without GPU acceleration. To share our findings and make contributions to the community, we make our code publicly available on our GitHub: https://github.com/hku-mars/ImMesh.

[1]  Yixi Cai,et al.  MARSIM: A Light-Weight Point-Realistic Simulator for LiDAR-Based UAVs , 2022, IEEE Robotics and Automation Letters.

[2]  T. Luan,et al.  A Survey on Metaverse: Fundamentals, Security, and Privacy , 2022, IEEE Communications Surveys & Tutorials.

[3]  Fu Zhang,et al.  STD: Stable Triangle Descriptor for 3D place recognition , 2022, 2023 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Jiarong Lin,et al.  R3LIVE++: A Robust, Real-time, Radiance reconstruction package with a tightly-coupled LiDAR-Inertial-Visual state Estimator , 2022, ArXiv.

[5]  Torsten Sattler,et al.  MeshLoc: Mesh-Based Visual Localization , 2022, ECCV.

[6]  Thien-Minh Nguyen,et al.  NTU VIRAL: A visual-inertial-ranging-lidar dataset, from an aerial vehicle viewpoint , 2021, Int. J. Robotics Res..

[7]  Fu Zhang,et al.  Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry , 2021, IEEE Robotics and Automation Letters.

[8]  Fu Zhang,et al.  R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package , 2021, 2022 International Conference on Robotics and Automation (ICRA).

[9]  Yixi Cai,et al.  FAST-LIO2: Fast Direct LiDAR-Inertial Odometry , 2021, IEEE Transactions on Robotics.

[10]  R. Siegwart,et al.  Global Localization in Meshes , 2021, Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC).

[11]  Cyrill Stachniss,et al.  Poisson Surface Reconstruction for LiDAR Odometry and Mapping , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Eckehard Steinbach,et al.  R-LOAM: Improving LiDAR Odometry and Mapping With Point-to-Mesh Features of a Known 3D Reference Object , 2021, IEEE Robotics and Automation Letters.

[13]  Wei Xu,et al.  R2LIVE: A Robust, Real-time, LiDAR-Inertial-Visual tightly-coupled state Estimator and mapping , 2021, ArXiv.

[14]  Wei Xu,et al.  ikd-Tree: An Incremental K-D Tree for Robotic Applications , 2021, ArXiv.

[15]  Yue Pan,et al.  MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Boyu Zhou,et al.  FUEL: Fast UAV Exploration Using Incremental Frontier Structure and Hierarchical Planning , 2020, IEEE Robotics and Automation Letters.

[17]  Fei Gao,et al.  RAPTOR: Robust and Perception-Aware Trajectory Replanning for Quadrotor Fast Flight , 2020, IEEE Transactions on Robotics.

[18]  IEEE International Conference on Robotics and Automation, ICRA 2021, Xi'an, China, May 30 - June 5, 2021 , 2021, ICRA.

[19]  Szymon Rusinkiewicz,et al.  Poisson Surface Reconstruction with Envelope Constraints , 2020, Comput. Graph. Forum.

[20]  Jiarong Lin,et al.  Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Fu Zhang,et al.  A fast, complete, point cloud based loop closure for LiDAR odometry and mapping , 2019, ArXiv.

[22]  S. Mystakidis,et al.  Metaverse , 2019, Interference.

[23]  G. Riva,et al.  The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature , 2018, Front. Psychol..

[24]  Brendan Englot,et al.  LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[25]  Cyrill Stachniss,et al.  Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments , 2018, Robotics: Science and Systems.

[26]  Wei Gao,et al.  SurfelWarp: Efficient Non-Volumetric Single View Dynamic Reconstruction , 2018, Robotics: Science and Systems.

[27]  Stefan Leutenegger,et al.  Efficient Octree-Based Volumetric SLAM Supporting Signed-Distance and Occupancy Mapping , 2018, IEEE Robotics and Automation Letters.

[28]  Dong Chen,et al.  LiDAR Point Clouds to 3-D Urban Models$:$ A Review , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Tim Weyrich,et al.  Comprehensive Use of Curvature for Robust and Accurate Online Surface Reconstruction , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Ashish Kapoor,et al.  AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles , 2017, FSR.

[31]  Roland Siegwart,et al.  Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV planning , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[32]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[33]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[34]  Ryan M. Eustice,et al.  University of Michigan North Campus long-term vision and lidar dataset , 2016, Int. J. Robotics Res..

[35]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Pierre Alliez,et al.  CGAL - The Computational Geometry Algorithms Library , 2011 .

[37]  Olaf Kähler,et al.  Hierarchical Voxel Block Hashing for Efficient Integration of Depth Images , 2016, IEEE Robotics and Automation Letters.

[38]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[39]  Stefan Leutenegger,et al.  ElasticFusion: Dense SLAM Without A Pose Graph , 2015, Robotics: Science and Systems.

[40]  Olaf Kähler,et al.  Very High Frame Rate Volumetric Integration of Depth Images on Mobile Devices , 2015, IEEE Transactions on Visualization and Computer Graphics.

[41]  Siddhartha S. Srinivasa,et al.  Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields , 2015, Robotics: Science and Systems.

[42]  Tim Weyrich,et al.  Anisotropic point-based fusion , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[43]  Tomas Pajdla,et al.  Exploiting Visibility Information in Surface Reconstruction to Preserve Weakly Supported Surfaces , 2014, International scholarly research notices.

[44]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[45]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[46]  Maxime Lhuillier,et al.  Incremental Solid Modeling from Sparse and Omnidirectional Structure-from-Motion Data , 2013, BMVC.

[47]  Jiawen Chen,et al.  Scalable real-time volumetric surface reconstruction , 2013, ACM Trans. Graph..

[48]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[49]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[50]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[52]  Samuli Laine,et al.  High-performance software rasterization on GPUs , 2011, HPG '11.

[53]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[54]  M. McCall,et al.  Rigid Body Dynamics , 2008 .

[55]  Matthew McCullough,et al.  Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development , 2009 .

[56]  Tim Bodenmüller,et al.  Streaming surface reconstruction from real time 3D-measurements , 2009 .

[57]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[58]  Luc Van Gool,et al.  In-hand scanning with online loop closure , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[59]  Jean-Philippe Pons,et al.  Efficient Multi-View Reconstruction of Large-Scale Scenes using Interest Points, Delaunay Triangulation and Graph Cuts , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[60]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[61]  Leif Kobbelt,et al.  A Surface-Growing Approach to Multi-View Stereo Reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[63]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[64]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[65]  Jean-Daniel Boissonnat,et al.  Complexity of the delaunay triangulation of points on surfaces the smooth case , 2003, SCG '03.

[66]  Markus H. Gross,et al.  Optimized Spatial Hashing for Collision Detection of Deformable Objects , 2003, VMV.

[67]  Marc Levoy,et al.  Real-time 3D model acquisition , 2002, ACM Trans. Graph..

[68]  Carme Torras,et al.  3D collision detection: a survey , 2001, Comput. Graph..

[69]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[70]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[71]  D. Baraff An Introduction to Physically Based Modeling: Rigid Body Simulation I—Unconstrained Rigid Body Dynamics , 1997 .

[72]  Steven Skiena,et al.  Optimizing triangle strips for fast rendering , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[73]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[74]  James Arvo,et al.  Graphics Gems II , 1994 .

[75]  Tom Davis,et al.  Opengl programming guide: the official guide to learning opengl , 1993 .

[76]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[77]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[78]  M. Pauline Baker,et al.  Computer graphics with OpenGL , 1986 .

[79]  William Kahan,et al.  Miscalculating area and angles of a needle-like triangle , 1986 .

[80]  Dipl.-Ing,et al.  Real-time Rendering , 2022 .