Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement

[1]  Leigh Wardhaugh,et al.  Technoeconomic Assessment of an Advanced Aqueous Ammonia-Based Postcombustion Capture Process Integrated with a 650-MW Coal-Fired Power Station. , 2016, Environmental science & technology.

[2]  Jin-Kuk Kim,et al.  Energy minimization of MEA-based CO2 capture process , 2016 .

[3]  Moses O. Tadé,et al.  Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements , 2016 .

[4]  Jian Chen,et al.  Systematic study of aqueous monoethanolamine‐based CO2 capture process: model development and process improvement , 2016 .

[5]  Meihong Wang,et al.  Process intensification for post-combustion CO2 capture with chemical absorption: A critical review , 2015 .

[6]  Moses O. Tadé,et al.  Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station. , 2015, Environmental science & technology.

[7]  Jinyue Yan,et al.  Carbon Capture and Storage (CCS) , 2015 .

[8]  Armistead G Russell,et al.  Amine-based CO2 capture technology development from the beginning of 2013-a review. , 2015, ACS applied materials & interfaces.

[9]  F. Ashour,et al.  Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine , 2014 .

[10]  Peter Thompson Frailie,et al.  Modeling of carbon dioxide absorption/stripping by aqueous methyldiethanolamine/piperazine , 2014 .

[11]  Kazuya Goto,et al.  A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture , 2013 .

[12]  Christian P. Hulteberg,et al.  Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine , 2013 .

[13]  Richard S. Middleton,et al.  The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power , 2013 .

[14]  Peter L. Douglas,et al.  A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator , 2013 .

[15]  Ashleigh Cousins,et al.  Model verification and evaluation of the rich‐split process modification at an Australian‐based post combustion CO 2 capture pilot plant , 2012 .

[16]  Alfons Kather,et al.  Evaluating the impact of an ammonia-based post-combustion CO2 capture process on a steam power plant with different cooling water temperatures , 2012 .

[17]  Chechet Biliyok,et al.  Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant , 2012 .

[18]  Hartmut Spliethoff,et al.  Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants , 2012 .

[19]  Meihong Wang,et al.  Post-combustion CO2 capture with chemical absorption: A state-of-the-art review , 2011 .

[20]  Magne Hillestad,et al.  Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture , 2011 .

[21]  Ashleigh Cousins,et al.  PRELIMINARY ANALYSIS OF PROCESS FLOW SHEET MODIFICATIONS FOR ENERGY EFFICIENT CO2 CAPTURE FROM FLUE GASES USING CHEMICAL ABSORPTION , 2011 .

[22]  Adrien Gomez,et al.  From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture , 2011 .

[23]  P. Feron,et al.  A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption , 2011 .

[24]  Mohamed Kanniche,et al.  Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture , 2011 .

[25]  Jochen Oexmann,et al.  Post-combustion CO2 capture : energetic evaluation of chemical absorption processes in coal-fired steam power plants , 2011 .

[26]  Bin Huang,et al.  Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station , 2010 .

[27]  Edward S. Rubin,et al.  Effects of technological learning on future cost and performance of power plants with CO2 capture , 2009 .

[28]  Gary T. Rochelle,et al.  Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution , 2009 .

[29]  Alfons Kather,et al.  Post-combustion CO2-capture from coal-fired power plants: Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate , 2008 .

[30]  Marcus Hilliard,et al.  A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas , 2008 .

[31]  Finn Andrew Tobiesen,et al.  Modeling of Blast Furnace CO 2 Capture Using Amine Absorbents , 2007 .

[32]  Hallvard F. Svendsen,et al.  Heat of Absorption of Carbon Dioxide (CO2) in Monoethanolamine (MEA) and 2-(Aminoethyl)ethanolamine (AEEA) Solutions , 2007 .

[33]  G. Versteeg,et al.  CO2 capture from power plants. Part I: A parametric study of the technical performance based on monoethanolamine , 2007 .

[34]  R. Steeneveldt,et al.  CO2 Capture and Storage: Closing the Knowing–Doing Gap , 2006 .

[35]  Geert Versteeg,et al.  Solubility of carbon dioxide in aqueous piperazine solutions , 2005 .

[36]  M. K. Aroua,et al.  Effect of Piperazine on CO 2 Loading in Aqueous Solutions of MDEA at Low Pressure , 2004 .

[37]  Gary T. Rochelle,et al.  Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine , 2002 .

[38]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[39]  Gary T. Rochelle,et al.  Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility , 2000 .

[40]  Gary T. Rochelle,et al.  Physical and chemical solubility of carbon dioxide in aqueous methyldiethanolamine , 2000 .

[41]  Guo-Wen Xu,et al.  A Study on Equilibrium Solubility for Carbon Dioxide in Methyldiethanolamine−Piperazine−Water Solution , 1999 .

[42]  Guo-Wen Xu,et al.  Gas−Liquid Equilibrium in a CO2−MDEA−H2O System and the Effect of Piperazine on It , 1998 .

[43]  A. E. Mather,et al.  Experimental Investigation of the Phase Equilibria in the Carbon Dioxide-Propane-3 M MDEA System , 1995 .

[44]  Meng-Hui Li,et al.  Solubility and Diffusivity of N2O and CO2 in (Diethanolamine + N-Methyldiethanolamine + Water) and in (Diethanolamine + 2-Amino-2-methyl-1-propanol + Water) , 1995 .

[45]  Ralph H. Weiland,et al.  Physical Solubility of Carbon Dioxide in Aqueous Alkanolamines via Nitrous Oxide Analogy , 1994 .

[46]  A. E. Mather,et al.  The solubility of carbon dioxide and hydrogen sulfide in a 35 wt% aqueous solution of methyldiethanolamine , 1993 .

[47]  O. C. Sandall,et al.  Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine , 1989 .

[48]  Gary T. Rochelle,et al.  Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation , 1989 .

[49]  Alan E. Mather,et al.  Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions , 1982 .

[50]  Robin Smith,et al.  Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution , 2016 .

[51]  Ahmed Alhajaj,et al.  A techno-economic analysis of post-combustion CO2 capture and compression applied to a combined cycle gas turbine: Part I. A parametric study of the key technical performance indicators , 2016 .

[52]  Yann Le Moullec,et al.  Process Modifications for Solvent-Based Post Combustion CO2 Capture , 2014 .

[53]  Hana Gerbelová,et al.  The effect of retrofitting Portuguese fossil fuel power plants with CCS , 2013 .

[54]  Ashleigh Cousins,et al.  Analysis of combined process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption , 2011 .

[55]  Jacob Nygaard Knudsen,et al.  Evaluation of process upgrades and novel solvents for the post combustion CO2 capture process in pilot-scale , 2011 .

[56]  Alfons Kather,et al.  Minimising the regeneration heat duty of post-combustion co2 capture by wet chemical absorption: the misguided focus on low heat of absorption solvents , 2010 .

[57]  N. Nakicenovic,et al.  Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[58]  Jerry A. Bullin,et al.  Using Mixed Amine Solutions for Gas Sweetening , 2006 .

[59]  P. W. J. Derks,et al.  Carbon dioxide absorption in piperazine activated N-methyldiethanolamine , 2006 .

[60]  John J. Carroll,et al.  Solubility of mixtures of hydrogen sulfide and carbon dioxide in aqueous N-methyldiethanolamine solutions , 1993 .

[61]  G. Versteeg,et al.  Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions , 2001 .

[62]  O. C. Sandall,et al.  Absorption of carbon dioxide into aqueous methyldiethanolamine , 1984 .