Displacement detection is suppressed by the post-saccadic stimulus

To establish a perceptually stable world despite the large retinal shifts caused by saccadic eye movements, the visual system reduces its sensitivity to the displacement of visual stimuli during saccades (e.g. saccadic suppression of displacement, SSD). Previous studies have demonstrated that inserting a temporal blank right after a saccade improves displacement detection performance. This ‘blanking effect’ suggests that visual information right after the saccade may play an important role in SSD. To understand the mechanisms underlying SSD, we here compare the effect of pre- and post-saccadic stimulus contrast on displacement detection during a saccade with and without inserting a blank. Our results show that observers’ sensitivity to detect visual displacement was reduced by increasing post-saccadic stimulus contrast, but a blank relieves the impairment. We successfully explain the results with a model proposing that parvo-pathway signals suppress the magno-pathway processes responsible for detecting displacements across saccades. Our results suggest that the suppression of the magno-pathway by parvo-pathway signals immediately after a saccade causes SSD, which helps to achieve the perceptual stability of the visual world across saccades.

[1]  Guillaume S. Masson,et al.  Motion perception during saccadic eye movements , 2000, Nature Neuroscience.

[2]  Mackay Dm Voluntary eye movements as questions. , 1972 .

[3]  D. Newport,et al.  Transient natural convection in a conducting enclosure heated from above , 2013, J. Vis..

[4]  Masahiro Takei,et al.  Human resource development and visualization , 2009, J. Vis..

[5]  Mark Wexler,et al.  Orthogonal steps relieve saccadic suppression. , 2014, Journal of vision.

[6]  O. Grüsser,et al.  Afterimage movement during saccades in the dark , 1987, Vision Research.

[7]  W. Reichardt,et al.  A two dimensional field theory for motion computation , 1988, Biological Cybernetics.

[8]  David Melcher,et al.  Backward Masking and Unmasking Across Saccadic Eye Movements , 2010, Current Biology.

[9]  L. Riggs,et al.  Saccadic suppression under conditions of whiteout. , 1982, Investigative ophthalmology & visual science.

[10]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[11]  W. Geisler,et al.  Optimal disparity estimation in natural stereo images. , 2014, Journal of vision.

[12]  K. Uchikawa,et al.  Saccadic suppression of achromatic and chromatic responses measured by increment-threshold spectral sensitivity. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Arvid Herwig,et al.  A “blanking effect” for surface features: Transsaccadic spatial-frequency discrimination is improved by postsaccadic blanking , 2015, Attention, Perception, & Psychophysics.

[14]  Ashleigh M. Richard,et al.  Understanding the function of visual short-term memory: transsaccadic memory, object correspondence, and gaze correction. , 2008, Journal of experimental psychology. General.

[15]  D. Mackay Voluntary eye movements as questions. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[16]  Andrew Hollingworth,et al.  The representation of the saccade target object depends on visual stability , 2014, Visual cognition.

[17]  Bruce Bridgeman,et al.  Saccadic suppression relies on luminance information , 1995, Psychological research.

[18]  Johan Wagemans,et al.  Object form discontinuity facilitates displacement discrimination across saccades. , 2010, Journal of vision.

[19]  Caroline Van Eccelpoel,et al.  The visual analog: evidence for a preattentive representation across saccades. , 2010, Journal of vision.

[20]  Hirohisa Yaguchi,et al.  Detection of relative and uniform motion. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Eric Castet,et al.  Motion perception of saccade-induced retinal translation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[23]  Mark Wexler,et al.  Motion Masking by Stationary Objects: A Study of Simulated Saccades , 2018, i-Perception.

[24]  Thérèse Collins,et al.  Remapping versus short-term memory in visual stability across saccades , 2018, Attention, Perception, & Psychophysics.

[25]  Heiner Deubel,et al.  Stimulus blanking reveals transsaccadic feature transfer , 2019, bioRxiv.

[26]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[27]  A. Hollingworth,et al.  An object-mediated updating account of insensitivity to transsaccadic change. , 2012, Journal of vision.

[28]  T. Collins The spatiotopic representation of visual objects across time , 2016, Attention, perception & psychophysics.

[29]  Patrick Cavanagh,et al.  Transsaccadic perceptual fusion. , 2017, Journal of vision.

[30]  Werner X Schneider,et al.  Breaking object correspondence across saccades impairs object recognition: The role of color and luminance. , 2016, Journal of vision.

[31]  Christoph Witzel,et al.  The most reasonable explanation of "the dress": Implicit assumptions about illumination. , 2017, Journal of vision.

[32]  Sabine Born Saccadic Suppression of Displacement Does Not Reflect a Saccade-Specific Bias to Assume Stability , 2019, Vision.

[33]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[34]  Eckart Zimmermann,et al.  Spatial Position Information Accumulates Steadily over Time , 2013, The Journal of Neuroscience.

[35]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[36]  Guy Wallis,et al.  The face-in-the-crowd effect: when angry faces are just cross(es). , 2011, Journal of vision.

[37]  Guido Marco Cicchini,et al.  Trans-saccadic integration of orientation information. , 2018, Journal of vision.

[38]  Arvid Herwig,et al.  Breaking Object Correspondence Across Saccadic Eye Movements Deteriorates Object Recognition , 2015, Front. Syst. Neurosci..

[39]  P. Cavanagh,et al.  Saccadic suppression of low-level motion , 1989, Vision Research.

[40]  K. Verfaillie,et al.  Parametric integration of visual form across saccades , 2010, Vision Research.

[41]  F. C. Volkmann,et al.  Time course of visual inhibition during voluntary saccades. , 1968, Journal of the Optical Society of America.

[42]  Patrick Cavanagh,et al.  Masking produces compression of space and time in the absence of eye movements. , 2014, Journal of neurophysiology.

[43]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[44]  Kazumichi Matsumiya,et al.  Contrast dependence of saccadic blanking and landmark effects , 2016, Vision Research.

[45]  B. Bridgeman,et al.  Postsaccadic target blanking prevents saccadic suppression of image displacement , 1996, Vision Research.

[46]  L. Marshall,et al.  Evidence for Optimal Integration of Visual Feature Representations across Saccades , 2015, The Journal of Neuroscience.

[47]  J. Douglas Crawford,et al.  Optimal transsaccadic integration explains distorted spatial perception , 2003, Nature.

[48]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[49]  A. V. Smirnov,et al.  Visualization of arc and plasma flow patterns for advanced material processing , 2015, J. Vis..

[50]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[51]  P. Cavanagh,et al.  ISI produces reverse apparent motion , 1990, Vision Research.

[52]  F. Campbell,et al.  Saccadic omission: Why we do not see a grey-out during a saccadic eye movement , 1978, Vision Research.