Metal Oxide Nanoarrays for Chemical Sensing: A Review of Fabrication Methods, Sensing Modes, and Their Inter-correlations

In recent years, engineered nanostructure assemblies such as nanowire arrays have attracted much research attention due to their unique chemical and functional characteristics collectively. The engineered nano-assemblies usually carry the characteristics distinct from bulk as a result of a size effect in their comprised elemental building blocks. The nanoscale size induced high surface-to-volume ratio is a fundamental attribute responsible for various chemical and physical properties required in various technologically important applications such as catalysts and sensors. This review article surveys the latest progress in engineered metal oxide nanostructure arrays, i.e., nanoarrays, for advanced chemical sensors’ design and application. It starts with an overview of gaseous chemical sensors followed by surveys of various fabrication methods and routes for metal oxide nanoarrays. Different sensing modes and corresponding applications have been highlighted in the mixed gaseous chemical sensing, which provides new approaches and perspectives to meet the challenges of selective gas sensing, such as the cross-sensitivity and inter-correlation of multiple sensing signals.

[1]  Hydrogen Sensors , 2018, Sensors for Safety and Process Control in Hydrogen Technologies.

[2]  Xuping Sun,et al.  MnO2 nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications. , 2018, Chemical communications.

[3]  P. Gao,et al.  Template-Guided Programmable Janus Heteronanostructure Arrays for Efficient Plasmonic Photocatalysis. , 2018, Nano letters.

[4]  Xinran Wang,et al.  Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays. , 2018, ACS nano.

[5]  Myung Sik Choi,et al.  Porous Si nanowires for highly selective room-temperature NO2 gas sensing , 2018, Nanotechnology.

[6]  Zhao Wang,et al.  Room-temperature hydrogen sensing performance of Nb2O5 nanorod arrays , 2018, RSC advances.

[7]  Yanping Zhao,et al.  Surface defect and gas-sensing performance of the well-aligned Sm-doped SnO2 nanoarrays , 2018 .

[8]  Huaping Zhao,et al.  Carrier Mobility-Dominated Gas Sensing: A Room-Temperature Gas-Sensing Mode for SnO2 Nanorod Array Sensors. , 2018, ACS applied materials & interfaces.

[9]  P. Righetti,et al.  A miniaturized sensor for detection of formaldehyde fumes , 2017, Electrophoresis.

[10]  T. Lu,et al.  Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization , 2017 .

[11]  Reinoud F. Wolffenbuttel,et al.  The Miniaturization of an Optical Absorption Spectrometer for Smart Sensing of Natural Gas , 2017, IEEE Transactions on Industrial Electronics.

[12]  Liaoyong Wen,et al.  Multiple nanostructures based on anodized aluminium oxide templates. , 2017, Nature nanotechnology.

[13]  Pu-Xian Gao,et al.  UV-enhanced CO sensing using Ga2O3-based nanorod arrays at elevated temperature , 2017 .

[14]  K. Schierbaum,et al.  Gas sensors based on plasma-electrochemically oxidized titanium foils , 2016 .

[15]  Yong Ding,et al.  Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature. , 2016, ACS applied materials & interfaces.

[16]  Yuehuan Li,et al.  One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas-sensing performance toward acetone , 2016 .

[17]  J. Demšar,et al.  Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications , 2016, Nature Communications.

[18]  Yunpei Zhu,et al.  Self‐Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation , 2015 .

[19]  Banshi D. Gupta,et al.  Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance , 2015 .

[20]  Zhaoyao Zhan,et al.  Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors. , 2015, ACS applied materials & interfaces.

[21]  Jasmin Grosinger,et al.  A secure miniaturized wireless sensor node for a smart home demonstrator , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[22]  I. Park,et al.  Multiplexed gas sensor based on heterogeneous metal oxide nanomaterial array enabled by localized liquid-phase reaction. , 2015, ACS applied materials & interfaces.

[23]  Guanhua Zhang,et al.  High‐Performance and Ultra‐Stable Lithium‐Ion Batteries Based on MOF‐Derived ZnO@ZnO Quantum Dots/C Core–Shell Nanorod Arrays on a Carbon Cloth Anode , 2015, Advanced materials.

[24]  Ganesh Kumar Mani,et al.  A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film , 2015 .

[25]  N. B. Anuar,et al.  The rise of "big data" on cloud computing: Review and open research issues , 2015, Inf. Syst..

[26]  Li-ping Zhu,et al.  Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor , 2014 .

[27]  Samit Kumar Ray,et al.  Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices , 2014, Scientific Reports.

[28]  P. Gao,et al.  Bimodular high temperature planar oxygen gas sensor , 2014, Front. Chem..

[29]  Huaping Zhao,et al.  Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: application for high performance supercapacitor. , 2014, Small.

[30]  Kunquan Hong,et al.  Controllable and Rapid Synthesis of Long ZnO Nanowire Arrays for Dye-Sensitized Solar Cells , 2014 .

[31]  Lili Xing,et al.  Core–Shell In2O3/ZnO Nanoarray Nanogenerator as a Self-Powered Active Gas Sensor with High H2S Sensitivity and Selectivity at Room Temperature , 2014 .

[32]  Lili Xing,et al.  Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. , 2014, Nanoscale.

[33]  Sean Li,et al.  Stochastic memristive nature in Co-doped CeO2 nanorod arrays , 2013 .

[34]  S. Jeng,et al.  Liquid crystal alignment on zinc oxide nanowire arrays for LCDs applications. , 2013, Optics express.

[35]  J. Tu,et al.  A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. , 2013, Nanoscale.

[36]  T. Edvinsson,et al.  A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties , 2013 .

[37]  Sunghoon Park,et al.  UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. , 2013, ACS applied materials & interfaces.

[38]  Sanjay Mathur,et al.  Metal Oxide Nanomaterials for Chemical Sensors , 2013 .

[39]  X. Lou,et al.  Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors , 2012 .

[40]  Pratim Biswas,et al.  Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. , 2012, Journal of the American Chemical Society.

[41]  Yanbing Guo,et al.  Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications , 2012, International journal of molecular sciences.

[42]  J. M. Baik,et al.  Hierarchically driven IrO2 nanowire electrocatalysts for direct sensing of biomolecules. , 2012, Analytical chemistry.

[43]  Liang-Yih Chen,et al.  Facile Continuous Flow Injection Process for High Quality Long ZnO Nanowire Arrays Synthesis , 2012 .

[44]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[45]  W. Jakubik,et al.  Surface acoustic wave-based gas sensors , 2011 .

[46]  Juan Zhou,et al.  Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity. , 2011, Nanoscale.

[47]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[48]  Kai Wang,et al.  Vertically Aligned ZnO Nanorod Arrays Coated with $\hbox{SnO}_{\bf 2}$/Noble Metal Nanoparticles for Highly Sensitive and Selective Gas Detection , 2011, IEEE Transactions on Nanotechnology.

[49]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[50]  Sundaram Gunasekaran,et al.  A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. , 2010, Talanta.

[51]  Min Guo,et al.  Hydrothermal growth of well-aligned TiO2 nanorod arrays: Dependence of morphology upon hydrothermal reaction conditions , 2010 .

[52]  B. Liang,et al.  Study of the synthesis of tungsten trioxide nanostructured arrays by tungsten hot filament chemical vapor deposition method and their field emission properties , 2010 .

[53]  Benxia Li,et al.  Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures , 2010 .

[54]  J. Zapien,et al.  A High-Efficiency Surface-Enhanced Raman Scattering Substrate Based on Silicon Nanowires Array Decorated with Silver Nanoparticles , 2010 .

[55]  Guo Mina Hydrothermal growth of well-aligned TiO_2 nanorod arrays: Dependence of morphology upon hydrothermal reaction conditions , 2010 .

[56]  Zhong Lin Wang,et al.  Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. , 2009, Applied physics letters.

[57]  Jiajun Chen,et al.  Growth of monoclinic WO3nanowire array for highly sensitive NO2 detection , 2009 .

[58]  K. Leung,et al.  Fabrication of ZnO nanospikes and nanopillars on ITO glass by templateless seed-layer-free electrodeposition and their field-emission properties. , 2009, ACS applied materials & interfaces.

[59]  Xiaojun Zhang,et al.  Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection , 2009 .

[60]  Zuxun Zhang,et al.  Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors , 2009, Nanotechnology.

[61]  Tsung-Tsong Wu,et al.  A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods , 2009, Nanotechnology.

[62]  Yadong Li,et al.  Nanocrystals: Solution-based synthesis and applications as nanocatalysts , 2009 .

[63]  Feng Li,et al.  Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors , 2008, Nanotechnology.

[64]  Jing Zhuang,et al.  SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. , 2008, Journal of the American Chemical Society.

[65]  W. Cai,et al.  Unconventional method for morphology-controlled carbonaceous nanoarrays based on electron irradiation of a polystyrene colloidal monolayer. , 2008, ACS nano.

[66]  Mario De Stefano,et al.  The Gas‐Detection Properties of Light‐Emitting Diatoms , 2008 .

[67]  Maximilian Fleischer,et al.  Advances in application potential of adsorptive-type solid state gas sensors: high-temperature semiconducting oxides and ambient temperature GasFET devices , 2008 .

[68]  Zhifu Liu,et al.  O2 and CO sensing of Ga2O3 multiple nanowire gas sensors , 2008 .

[69]  K. Ozoemena,et al.  Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine , 2008 .

[70]  David R Walt,et al.  Very high density sensing arrays. , 2008, Chemical reviews.

[71]  Chenguo Hu,et al.  Synthesis of Ba-doped CeO2 nanowires and their application as humidity sensors , 2007, Nanotechnology.

[72]  I-Cherng Chen,et al.  Laterally grown ZnO nanowire ethanol gas sensors , 2007 .

[73]  J. Fergus Perovskite oxides for semiconductor-based gas sensors , 2007 .

[74]  Norio Miura,et al.  Detection of propene by using new-type impedancemetric zirconia-based sensor attached with oxide sensing-electrode , 2006 .

[75]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[76]  Alexander Star,et al.  Gas sensor array based on metal-decorated carbon nanotubes. , 2006, The journal of physical chemistry. B.

[77]  L. Wan,et al.  Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. , 2006, The journal of physical chemistry. B.

[78]  A. D. Risi,et al.  GaN optical system for CO and NO gas detection in the exhaust manifold of combustion engines , 2006 .

[79]  Q. Wan,et al.  Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. , 2005, Chemical communications.

[80]  Yuanzhe Piao,et al.  Nanostructured materials prepared by use of ordered porous alumina membranes , 2005 .

[81]  Giorgio Sberveglieri,et al.  Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts , 2005 .

[82]  Ying Liu,et al.  Growth of Aligned Square‐Shaped SnO2 Tube Arrays , 2005 .

[83]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[84]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[85]  Teri W. Odom,et al.  Directed Growth of Ordered Arrays of Small‐Diameter ZnO Nanowires , 2004 .

[86]  L. F. Reyes,et al.  Gas Sensing with Perovskite-like Oxides Having ABO3 and BO3 Structures , 2004 .

[87]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[88]  A. K. Srivastava,et al.  Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network , 2003 .

[89]  Yu-Ming Lin,et al.  Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass , 2003 .

[90]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[91]  Y. Hatanaka,et al.  Presumption and improvement for gallium oxide thin film of high temperature oxygen sensors , 2003 .

[92]  H. Troy Nagle,et al.  Handbook of Machine Olfaction: Electronic Nose Technology , 2003 .

[93]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[94]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[95]  N. Chaniotakis,et al.  Carbon nanotube array-based biosensor , 2003, Analytical and bioanalytical chemistry.

[96]  S. Pennycook,et al.  ZnO Nanoneedles Grown Vertically on Si Substrates by Non‐Catalytic Vapor‐Phase Epitaxy , 2002 .

[97]  Tae Jae Lee,et al.  Field emission from well-aligned zinc oxide nanowires grown at low temperature , 2002 .

[98]  M. Kahrizi,et al.  High-temperature gas sensor using perovskite thin films on a suspended microheater , 2002 .

[99]  D. Blom,et al.  Synthesis of Ordered Metallic Nanowires inside Ordered Mesoporous Materials through Electroless Deposition , 2002 .

[100]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[101]  E. Llobet,et al.  Multicomponent gas mixture analysis using a single tin oxide sensor and dynamic pattern recognition , 2001, IEEE Sensors Journal.

[102]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[103]  Josep Samitier,et al.  An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor , 2001 .

[104]  M. Fleischer,et al.  High-temperature semiconductor gas sensors , 2001 .

[105]  A. Hagfeldt,et al.  Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO , 2001 .

[106]  H. Meixner,et al.  Selective gas detection with high-temperature operated metal oxides using catalytic filters , 2000 .

[107]  K. Bodenhöfer,et al.  Conferring selectivity to chemical sensors via polymer side-chain selection: thermodynamics of vapor sorption by a set of polysiloxanes on thickness-shear mode resonators , 2000, Analytical chemistry.

[108]  Gregory A. Bakken,et al.  Computational methods for the analysis of chemical sensor array data from volatile analytes. , 2000, Chemical reviews.

[109]  J.D.N. Cheeke,et al.  Acoustic wave gas sensors , 1999 .

[110]  A. Birner,et al.  Fabrication and Microstructuring of Hexagonally Ordered Two‐Dimensional Nanopore Arrays in Anodic Alumina , 1999 .

[111]  H. Meixner,et al.  Selectivity in high-temperature operated semiconductor gas-sensors , 1998 .

[112]  T. Scherg,et al.  Preparation of AlVO4-films for sensor application via a sol-gel/spin-coating technique , 1997 .

[113]  David S. Ballantine,et al.  Acoustic wave sensors : theory, design, and physico-chemical applications , 1997 .

[114]  H. Meixner,et al.  A study of surface modification at semiconducting Ga2O3 thin film sensors for enhancement of the sensitivity and selectivity , 1996 .

[115]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[116]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[117]  U. Lampe,et al.  High temperature oxygen sensor based on sputtered cerium oxide , 1995 .

[118]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[119]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[120]  Charles R. Martin,et al.  Preparation and electrochemical characterization of ultramicroelectrode ensembles , 1987 .

[121]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[122]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.