Super-smooth cubic Powell-Sabin splines on three-directional triangulations: B-spline representation and subdivision

Abstract Starting from a general B-spline representation for C 1 cubic Powell–Sabin splines on arbitrary triangulations, we focus on the construction of a B-spline representation for a particular subspace defined on three-directional triangulations with C 2 super-smoothness over each of the macro-triangles. We analyze the properties of the basis and point out the relation with simplex splines. Furthermore, we provide explicit expressions for the B-spline coefficients of any element of the spline space, and derive subdivision rules under dyadic refinement. Finally, we show simple conditions ensuring global C 2 smoothness on the domain.

[1]  Oleg Davydov,et al.  C2 piecewise cubic quasi-interpolants on a 6-direction mesh , 2010, J. Approx. Theory.

[2]  Hendrik Speleers,et al.  Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..

[3]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[4]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[5]  Hendrik Speleers,et al.  On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..

[6]  Huan-Wen Liu,et al.  A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..

[7]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[8]  C. Chui,et al.  Surface subdivision schemes generated by refinable bivariate spline function vectors , 2003 .

[9]  Sara Remogna,et al.  Bivariate C2 cubic spline quasi-interpolants on uniform Powell–Sabin triangulations of a rectangular domain , 2012, Adv. Comput. Math..

[10]  Hendrik Speleers A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..

[11]  Tom Lyche,et al.  Simplex-splines on the Clough-Tocher element , 2018, Comput. Aided Geom. Des..

[12]  Ahmed Tijini,et al.  A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..

[13]  Hendrik Speleers Interpolation with quintic Powell-Sabin splines , 2012 .

[14]  Jan Groselj,et al.  C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..

[15]  A. Bettayeb Symmetric multi-box splines for higher degree , 2010 .

[16]  C. D. Boor,et al.  Box splines , 1993 .

[17]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[18]  Paul Dierckx,et al.  Subdivision of uniform Powell-Sabin splines , 1999, Comput. Aided Geom. Des..

[19]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[20]  Hendrik Speleers,et al.  Three recipes for quasi-interpolation with cubic Powell-Sabin splines , 2018, Comput. Aided Geom. Des..

[21]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[22]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[23]  Malcolm A. Sabin,et al.  A bivariate C1 subdivision scheme based on cubic half-box splines , 2019, Comput. Aided Geom. Des..

[24]  Tom Lyche,et al.  B-spline-like bases for C2 cubics on the Powell-Sabin 12-split , 2019, ArXiv.

[25]  T. Goodman Multi-Box Splines , 2007 .