Super-smooth cubic Powell-Sabin splines on three-directional triangulations: B-spline representation and subdivision
暂无分享,去创建一个
[1] Oleg Davydov,et al. C2 piecewise cubic quasi-interpolants on a 6-direction mesh , 2010, J. Approx. Theory.
[2] Hendrik Speleers,et al. Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..
[3] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[4] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[5] Hendrik Speleers,et al. On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..
[6] Huan-Wen Liu,et al. A bivariate C1 cubic super spline space on Powell-Sabin triangulation , 2008, Comput. Math. Appl..
[7] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[8] C. Chui,et al. Surface subdivision schemes generated by refinable bivariate spline function vectors , 2003 .
[9] Sara Remogna,et al. Bivariate C2 cubic spline quasi-interpolants on uniform Powell–Sabin triangulations of a rectangular domain , 2012, Adv. Comput. Math..
[10] Hendrik Speleers. A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..
[11] Tom Lyche,et al. Simplex-splines on the Clough-Tocher element , 2018, Comput. Aided Geom. Des..
[12] Ahmed Tijini,et al. A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation , 2014, Math. Comput. Simul..
[13] Hendrik Speleers. Interpolation with quintic Powell-Sabin splines , 2012 .
[14] Jan Groselj,et al. C1 cubic splines on Powell-Sabin triangulations , 2016, Appl. Math. Comput..
[15] A. Bettayeb. Symmetric multi-box splines for higher degree , 2010 .
[16] C. D. Boor,et al. Box splines , 1993 .
[17] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[18] Paul Dierckx,et al. Subdivision of uniform Powell-Sabin splines , 1999, Comput. Aided Geom. Des..
[19] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[20] Hendrik Speleers,et al. Three recipes for quasi-interpolation with cubic Powell-Sabin splines , 2018, Comput. Aided Geom. Des..
[21] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[22] Hans-Peter Seidel,et al. An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.
[23] Malcolm A. Sabin,et al. A bivariate C1 subdivision scheme based on cubic half-box splines , 2019, Comput. Aided Geom. Des..
[24] Tom Lyche,et al. B-spline-like bases for C2 cubics on the Powell-Sabin 12-split , 2019, ArXiv.
[25] T. Goodman. Multi-Box Splines , 2007 .