Deep Predictive Learning in Neocortex and Pulvinar

How does the human brain learn new concepts from raw sensory experience, without explicit instruction? We still do not have a widely-accepted answer to this central question. Here, we propose a detailed biological mechanism for the widely-embraced idea that learning is based on the differences between predictions and actual outcomes (i.e., predictive error-driven learning). Specifically, numerous weak projections into the pulvinar nucleus of the thalamus generate top-down predictions, and sparse, focal driver inputs from lower areas supply the actual outcome, originating in layer 5 intrinsic bursting (5IB) neurons. Thus, the outcome is only briefly activated, roughly every 100 msec (i.e., 10 Hz, alpha), resulting in a temporal difference error signal, which drives local synaptic changes throughout the neocortex, resulting in a biologically-plausible form of error backpropagation learning. We implemented these mechanisms in a large-scale model of the visual system, and found that the simulated inferotemporal (IT) pathway learns to systematically categorize 3D objects according to invariant shape properties, based solely on predictive learning from raw visual inputs. These categories match human judgments on the same stimuli, and are consistent with neural representations in IT cortex in primates.

[1]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[2]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[3]  M J Kahana,et al.  Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition , 2017, Nature Communications.

[4]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[5]  Kenneth D. Harris,et al.  Laminar-dependent effects of cortical state on auditory cortical spontaneous activity , 2012, Front. Neural Circuits.

[6]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[8]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[9]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[10]  R. Malenka,et al.  NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). , 2012, Cold Spring Harbor perspectives in biology.

[11]  J. Elman,et al.  Rethinking Innateness: A Connectionist Perspective on Development , 1996 .

[12]  James L. McClelland,et al.  Learning the structure of event sequences. , 1991, Journal of experimental psychology. General.

[13]  Pineda,et al.  Generalization of back-propagation to recurrent neural networks. , 1987, Physical review letters.

[14]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[15]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: Part 2. The contextual enhancement effect and some tests and extensions of the model. , 1982, Psychological review.

[16]  Floris P. de Lange,et al.  Local Entrainment of Alpha Oscillations by Visual Stimuli Causes Cyclic Modulation of Perception , 2014, The Journal of Neuroscience.

[17]  Jim M. Monti,et al.  Neural repetition suppression reflects fulfilled perceptual expectations , 2008, Nature Neuroscience.

[18]  E. Spelke,et al.  Origins of knowledge. , 1992, Psychological review.

[19]  Randall C. O'Reilly,et al.  Learning Through Time in the Thalamocortical Loops , 2014, 1407.3432.

[20]  W. Klimesch,et al.  Alpha phase synchronization predicts P1 and N1 latency and amplitude size. , 2005, Cerebral cortex.

[21]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[22]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[23]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[24]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[26]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[27]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[28]  C. Summerfield,et al.  Expectation (and attention) in visual cognition , 2009, Trends in Cognitive Sciences.

[29]  T. Jay,et al.  NMDA Receptor‐dependent Long‐term Potentiation in the Hippocampal Afferent Fibre System to the Prefrontal Cortex in the Rat , 1995, The European journal of neuroscience.

[30]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[31]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[32]  S. Sherman,et al.  The Function of Metabotropic Glutamate Receptors in Thalamus and Cortex , 2014, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[33]  R. VanRullen,et al.  The Phase of Ongoing EEG Oscillations Predicts Visual Perception , 2009, The Journal of Neuroscience.

[34]  A. Clark Whatever next? Predictive brains, situated agents, and the future of cognitive science. , 2013, The Behavioral and brain sciences.

[35]  R. O’Reilly,et al.  Deep Predictive Learning: A Comprehensive Model of Three Visual Streams , 2017, 1709.04654.

[36]  K. Rockland Two types of corticopulvinar terminations: Round (type 2) and elongate (type 1) , 1996, The Journal of comparative neurology.

[37]  Mark F. Bear,et al.  The BCM theory of synapse modification at 30: interaction of theory with experiment , 2012, Nature Reviews Neuroscience.

[38]  A. Reber Implicit learning of artificial grammars , 1967 .

[39]  Pascal Vincent,et al.  Generalized Denoising Auto-Encoders as Generative Models , 2013, NIPS.

[40]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[41]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[42]  F. D. Lange,et al.  How Do Expectations Shape Perception? , 2018, Trends in Cognitive Sciences.

[43]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[44]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[45]  Mark F. Bear,et al.  Learned spatiotemporal sequence recognition and prediction in primary visual cortex , 2014, Nature Neuroscience.

[46]  W. Walter The Living Brain , 1963 .

[47]  Michael M. Halassa,et al.  Thalamic control of sensory selection in divided attention , 2015, Nature.

[48]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[49]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[50]  Harri Valpola,et al.  From neural PCA to deep unsupervised learning , 2014, ArXiv.

[51]  Floris P de Lange,et al.  Statistical learning attenuates visual activity only for attended stimuli , 2019, bioRxiv.

[52]  Naoki Kogo,et al.  Is predictive coding theory articulated enough to be testable? , 2015, Front. Comput. Neurosci..

[53]  Wolfgang Klimesch,et al.  Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothesis , 2011, Brain Research.

[54]  Nick Yeung,et al.  The many characters of visual alpha oscillations , 2018, The European journal of neuroscience.

[55]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[57]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[58]  S Murray Sherman,et al.  Corticofugal circuits: Communication lines from the cortex to the rest of the brain , 2019, The Journal of comparative neurology.

[59]  Rüdiger von der Heydt,et al.  Remapping of Border Ownership in the Visual Cortex , 2013, The Journal of Neuroscience.

[60]  Floris P. de Lange,et al.  How Prediction Errors Shape Perception, Attention, and Motivation , 2012, Front. Psychology.

[61]  James A. Mazer,et al.  Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology , 2016, Front. Syst. Neurosci..

[62]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[63]  Mark H. Johnson,et al.  Dynamic Plasticity Influences the Emergence of Function in a Simple Cortical Array , 1996, Neural Networks.

[64]  Geoffrey Schoenbaum,et al.  Rethinking dopamine as generalized prediction error , 2018, bioRxiv.

[65]  Alexander Maier,et al.  Infragranular Sources of Sustained Local Field Potential Responses in Macaque Primary Visual Cortex , 2011, The Journal of Neuroscience.

[66]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[67]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[69]  João F. Henriques,et al.  SPATIAL TRANSFORMATIONS , 2017 .

[70]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.

[71]  G. Avanzini,et al.  Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex , 1995, Brain Research.

[72]  Christopher C. Pack,et al.  Perisaccadic remapping: What? How? Why? , 2020, Reviews in the neurosciences.

[73]  Glyn W. Humphreys,et al.  Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey , 2009, Proceedings of the National Academy of Sciences.

[74]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[75]  J. Hawkins,et al.  On Intelligence , 2004 .

[76]  Chen Yu,et al.  Embodied attention and word learning by toddlers , 2012, Cognition.

[77]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[78]  James C. R. Whittington,et al.  Theories of Error Back-Propagation in the Brain , 2019, Trends in Cognitive Sciences.

[79]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[80]  C. Koch,et al.  Is perception discrete or continuous? , 2003, Trends in Cognitive Sciences.

[81]  M. Kahana,et al.  Theta returns , 2001, Current Opinion in Neurobiology.

[82]  B. Postle,et al.  Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction , 2015, Proceedings of the National Academy of Sciences.

[83]  E. Maris,et al.  Prior Expectation Mediates Neural Adaptation to Repeated Sounds in the Auditory Cortex: An MEG Study , 2011, The Journal of Neuroscience.

[84]  D. B. Bender,et al.  Effect of attentive fixation in macaque thalamus and cortex. , 2001, Journal of neurophysiology.

[85]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[86]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[87]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[88]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  Ryota Kanai,et al.  Rhythmic Influence of Top–Down Perceptual Priors in the Phase of Prestimulus Occipital Alpha Oscillations , 2016, Journal of Cognitive Neuroscience.

[90]  James J DiCarlo,et al.  Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks , 2018, The Journal of Neuroscience.

[91]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain , 2000 .

[92]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[93]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[94]  Mitsuo Kawato,et al.  A forward-inverse optics model of reciprocal connections between visual cortical areas , 1993 .

[95]  S. Sherman,et al.  Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices , 2012, The Journal of comparative neurology.

[96]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[97]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[98]  Randall C. O'Reilly,et al.  Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm , 1996, Neural Computation.

[99]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[100]  M. Pinsk,et al.  A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention , 2018, Neuron.

[101]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[102]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[103]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[104]  Xiao-Jing Wang,et al.  Engagement of Pulvino-cortical Feedforward and Feedback Pathways in Cognitive Computations , 2018, Neuron.

[105]  R. VanRullen Perceptual Cycles , 2016, Trends in Cognitive Sciences.

[106]  Gabriel Kreiman,et al.  Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning , 2016, ICLR.

[107]  Z. Pylyshyn The role of location indexes in spatial perception: A sketch of the FINST spatial-index model , 1989, Cognition.

[108]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[109]  Plamen A. Antonov,et al.  Too little, too late, and in the wrong place: Alpha band activity does not reflect an active mechanism of selective attention , 2020, NeuroImage.

[110]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[111]  J. Anthony Movshon,et al.  Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina) , 2012, Vision Research.

[112]  Vivien A. Casagrande,et al.  Gating and control of primary visual cortex by pulvinar , 2012, Nature Neuroscience.

[113]  Ronald J. Williams,et al.  Gradient-based learning algorithms for recurrent networks and their computational complexity , 1995 .

[114]  A. Falchier,et al.  Top-down, contextual entrainment of neuronal oscillations in the auditory thalamocortical circuit , 2018, Proceedings of the National Academy of Sciences.

[115]  Daniel Guitton,et al.  Coherent alpha oscillations link current and future receptive fields during saccades , 2017, Proceedings of the National Academy of Sciences.

[116]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[117]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[118]  Yutaka Komura,et al.  Responses of pulvinar neurons reflect a subject's confidence in visual categorization , 2013, Nature Neuroscience.

[119]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[120]  Yuka Sasaki,et al.  Perceptual learning: toward a comprehensive theory. , 2015, Annual review of psychology.

[121]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[122]  K. Mathewson,et al.  Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment , 2010, Cognition.

[123]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[124]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[125]  John J. Foxe,et al.  Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. , 2006, Journal of neurophysiology.

[126]  D. Robinson,et al.  Chapter 31 Functional contributions of the primate pulvinar , 1993 .

[127]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[129]  R W Guillery,et al.  Distinct functions for direct and transthalamic corticocortical connections. , 2011, Journal of neurophysiology.

[130]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[131]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[132]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[133]  Seth A. Herd,et al.  The Leabra Cognitive Architecture: How to Play 20 Principles with Nature and Win! , 2012 .

[134]  Adam Santoro,et al.  Backpropagation and the brain , 2020, Nature Reviews Neuroscience.

[135]  Floris P. de Lange,et al.  Statistical learning attenuates visual activity only for attended stimuli , 2019 .

[136]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[137]  S. Petersen,et al.  Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. , 1985, Journal of neurophysiology.

[138]  Alexander Kraskov,et al.  Influence of spiking activity on cortical local field potentials , 2013, The Journal of physiology.

[139]  Janneke F. M. Jehee,et al.  Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex , 2012, Neuron.

[140]  Edward Awh,et al.  The role of alpha oscillations in spatial attention: limited evidence for a suppression account. , 2019, Current opinion in psychology.

[141]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[142]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[143]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[144]  Cyriel M A Pennartz,et al.  Towards a Unified View on Pathways and Functions of Neural Recurrent Processing , 2019, Trends in Neurosciences.

[145]  Geoffrey E. Hinton Reducing the Dimensionality of Data with Neural , 2008 .

[146]  R. Bjork Memory and metamemory considerations in the training of human beings. , 1994 .

[147]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[148]  J. Palva,et al.  Functional Roles of Alpha-Band Phase Synchronization in Local and Large-Scale Cortical Networks , 2011, Front. Psychology.

[149]  Andrew Jaegle,et al.  Direct Control of Visual Perception with Phase-specific Modulation of Posterior Parietal Cortex , 2014, Journal of Cognitive Neuroscience.

[150]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[151]  David P. McGovern,et al.  Evaluating the neurophysiological evidence for predictive processing as a model of perception , 2020, Annals of the New York Academy of Sciences.

[152]  R. O’Reilly Six principles for biologically based computational models of cortical cognition , 1998, Trends in Cognitive Sciences.

[153]  Robert Desimone,et al.  Pulvinar-Cortex Interactions in Vision and Attention , 2016, Neuron.

[154]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[155]  Daniel Guitton,et al.  Two distinct types of remapping in primate cortical area V4 , 2016, Nature Communications.

[156]  P. Fldik,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Computation.

[157]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[158]  C. Summerfield,et al.  Expectation in perceptual decision making: neural and computational mechanisms , 2014, Nature Reviews Neuroscience.

[159]  Peter Dayan,et al.  Improving Generalization for Temporal Difference Learning: The Successor Representation , 1993, Neural Computation.

[160]  George Kachergis,et al.  A continuous-time neural model for sequential action , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[161]  Gregor Thut,et al.  Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum , 2018, The Journal of Neuroscience.

[162]  Dileep George,et al.  Towards a Mathematical Theory of Cortical Micro-circuits , 2009, PLoS Comput. Biol..

[163]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[164]  S. Grossberg How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. , 1999, Spatial vision.

[165]  Caspar M. Schwiedrzik,et al.  Expecting to See a Letter: Alpha Oscillations as Carriers of Top-Down Sensory Predictions. , 2016, Cerebral cortex.

[166]  Matthias H. Hennig,et al.  Theoretical models of synaptic short term plasticity , 2013, Front. Comput. Neurosci..

[167]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Francis Crick,et al.  The recent excitement about neural networks , 1989, Nature.

[169]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[170]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[171]  C. Olson,et al.  Statistical learning of visual transitions in monkey inferotemporal cortex , 2011, Proceedings of the National Academy of Sciences.

[172]  Geoffrey E. Hinton,et al.  Learning Representations by Recirculation , 1987, NIPS.

[173]  F. Ashby,et al.  Computational Cognitive Neuroscience , 2017 .

[174]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[175]  H. Berger Über das Elektrenkephalogramm des Menschen , 1938, Archiv für Psychiatrie und Nervenkrankheiten.

[176]  David J. Jilk,et al.  Recurrent Processing during Object Recognition , 2011, Front. Psychol..

[177]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[178]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[179]  H. Bridge,et al.  Adaptive Pulvinar Circuitry Supports Visual Cognition , 2016, Trends in Cognitive Sciences.

[180]  Alejandro Lleras,et al.  Making Waves in the Stream of Consciousness: Entraining Oscillations in EEG Alpha and Fluctuations in Visual Awareness with Rhythmic Visual Stimulation , 2012, Journal of Cognitive Neuroscience.

[181]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[182]  D. Pinault The thalamic reticular nucleus: structure, function and concept , 2004, Brain Research Reviews.

[183]  James A. Bednar,et al.  Building a mechanistic model of the development and function of the primary visual cortex , 2012, Journal of Physiology-Paris.

[184]  Shawn R. Olsen,et al.  Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex , 2014, Neuron.

[185]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[186]  Yehezkel Yeshurun,et al.  Modeling the electrical field created by mass neural activity , 2013, Neural Networks.

[187]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[188]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[189]  J. W. Osselton,et al.  The influence of the EEG alpha rhythm on the perception of visual stimuli. , 1974, Psychophysiology.

[190]  Stefano Fusi,et al.  Why neurons mix: high dimensionality for higher cognition , 2016, Current Opinion in Neurobiology.

[191]  Sabine Kastner,et al.  Thalamic functions in distributed cognitive control , 2017, Nature Neuroscience.

[192]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[193]  Diane M. Beck,et al.  To See or Not to See: Prestimulus α Phase Predicts Visual Awareness , 2009, The Journal of Neuroscience.

[194]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[195]  Floris P. de Lange,et al.  Predictive Coding in Sensory Cortex , 2015 .

[196]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[197]  W. T. Maddox,et al.  Annals of the New York Academy of Sciences Human Category Learning 2.0 Brief Review of First-generation Research , 2022 .

[198]  Rufin Vogels,et al.  Adaptation can explain evidence for encoding of probabilistic information in macaque inferior temporal cortex , 2017, Current Biology.

[199]  Yoshua Bengio,et al.  STDP as presynaptic activity times rate of change of postsynaptic activity , 2015, 1509.05936.

[200]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[201]  S. Sherman,et al.  Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[202]  Paul Tiesinga,et al.  Oscillatory mechanisms of feedforward and feedback visual processing , 2015, Trends in Neurosciences.

[203]  David J. Freedman,et al.  Inferring learning rules from distribution of firing rates in cortical neurons , 2015, Nature Neuroscience.

[204]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[205]  G. Buzsáki Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory , 2005, Hippocampus.

[206]  K. Harris,et al.  Gating of Sensory Input by Spontaneous Cortical Activity , 2013, The Journal of Neuroscience.

[207]  Michael W. Spratling Reconciling Predictive Coding and Biased Competition Models of Cortical Function , 2008, Frontiers Comput. Neurosci..

[208]  D. B. Bender,et al.  Receptive-field properties of neurons in the macaque inferior pulvinar. , 1982, Journal of neurophysiology.

[209]  E. John,et al.  Perceptual framing and cortical alpha rhythm , 1981, Neuropsychologia.

[210]  C Gundlach,et al.  Spatial Attentional Selection Modulates Early Visual Stimulus Processing Independently of Visual Alpha Modulations. , 2020, Cerebral cortex.

[211]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[212]  Ole Jensen,et al.  Top–Down Control of Alpha Phase Adjustment in Anticipation of Temporally Predictable Visual Stimuli , 2018, Journal of Cognitive Neuroscience.

[213]  H. Urakubo,et al.  Requirement of an Allosteric Kinetics of NMDA Receptors for Spike Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[214]  Elias B. Issa,et al.  Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals , 2018, eLife.

[215]  R. W. Guillery,et al.  Functional Connections of Cortical Areas: A New View from the Thalamus , 2013 .

[216]  S. Kastner,et al.  A Rhythmic Theory of Attention , 2019, Trends in Cognitive Sciences.

[217]  D. LaBerge,et al.  Positron emission tomographic measurements of pulvinar activity during an attention task , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[218]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.