NONDETERMINISTIC FINITE AUTOMATA — RECENT RESULTS ON THE DESCRIPTIONAL AND COMPUTATIONAL COMPLEXITY

Nondeterministic finite automata (NFAs) were introduced in [68], where their equivalence to deterministic finite automata was shown. Over the last 50 years, a vast literature documenting the importance of finite automata as an enormously valuable concept has been developed. In the present paper, we tour a fragment of this literature. Mostly, we discuss recent developments relevant to NFAs related problems like, for example, (i) simulation of and by several types of finite automata, (ii) minimization and approximation, (iii) size estimation of minimal NFAs, and (iv) state complexity of language operations. We thus come across descriptional and computational complexity issues of nondeterministic finite automata. We do not prove these results but we merely draw attention to the big picture and some of the main ideas involved.

[1]  Jeffrey Shallit,et al.  Unary Language Operations, State Complexity and Jacobsthal's Function , 2002, Int. J. Found. Comput. Sci..

[2]  Carlo Mereghetti,et al.  Optimal Simulations Between Unary Automata , 1998, STACS.

[3]  Bevis Brunel Low,et al.  Theory of Machines , 1958 .

[4]  Tsunehiko Kameda,et al.  On the State Minimization of Nondeterministic Finite Automata , 1970, IEEE Transactions on Computers.

[5]  Derick Wood,et al.  On the state complexity of reversals of regular languages , 2004, Theor. Comput. Sci..

[6]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[7]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[8]  Anca Muscholl,et al.  Computing epsilon-free NFA from regular expressions in O(n log2(n)) time , 2000, RAIRO Theor. Informatics Appl..

[9]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[10]  Jeffrey Shallit,et al.  A Lower Bound Technique for the Size of Nondeterministic Finite Automata , 1996, Inf. Process. Lett..

[11]  Mike Paterson,et al.  A family of NFAs which need 2n- deterministic states , 2003, Theor. Comput. Sci..

[12]  Viliam Geffert,et al.  Magic numbers in the state hierarchy of finite automata , 2006, Inf. Comput..

[13]  Michael Sipser Lower Bounds on the Size of Sweeping Automata , 1980, J. Comput. Syst. Sci..

[14]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[15]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[16]  Jean-Camille Birget,et al.  Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..

[17]  Markus Holzer,et al.  On the average state and transition complexity of finite languages , 2007, Theor. Comput. Sci..

[18]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[19]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[20]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[21]  Yahiko Kambayashi,et al.  Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs , 2000, Theor. Comput. Sci..

[22]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[23]  Michael Domaratzki,et al.  Transition complexity of language operations , 2007, Theor. Comput. Sci..

[24]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[25]  Jean-Camille Birget State-complexity of finite-state devices, state compressibility and incompressibility , 2005, Mathematical systems theory.

[26]  Martin Kutrib,et al.  Nondeterministic Descriptional Complexity Of Regular Languages , 2003, Int. J. Found. Comput. Sci..

[27]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[28]  Thomas Wilke,et al.  Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.

[29]  Juraj Hromkovic,et al.  Comparing the size of NFAs with and without epsilon-transitions , 2007, Theor. Comput. Sci..

[30]  Jozef Jirásek,et al.  State complexity of concatenation and complementation , 2005, Int. J. Found. Comput. Sci..

[31]  Yuri Lifshits A lower bound on the size of [epsiv]-free NFA corresponding to a regular expression , 2003, Inf. Process. Lett..

[32]  Giovanni Pighizzini,et al.  Complementing unary nondeterministic automata , 2005, Theor. Comput. Sci..

[33]  Galina Jirásková,et al.  State complexity of some operations on binary regular languages , 2005, Theor. Comput. Sci..

[34]  Alexander Okhotin,et al.  State complexity of cyclic shift , 2008, RAIRO Theor. Informatics Appl..

[35]  Andreas Malcher,et al.  Minimizing finite automata is computationally hard , 2004, Theor. Comput. Sci..