A compressible flow model with capillary effects

A quasi-conservative formulation for compressible flows with interfaces including both capillary and viscous effects is developed. The model involves: (i) acoustic and convective transport; (ii) surface tension effects introduced as an extension of the CSF method (Brackbill et al.) to compressible flows; (iii) viscous effects. The interfaces are considered as diffused zones. Every point of the flow is correctly described thanks to a mixture equation of state based on energy conservation and pressure equilibrium. The model is thus valid in each pure fluid as well as at interfaces. A Godunov type method, that enables interface capturing, is developed and used whatever the mesh point. Numerical tests are performed over a wide range of physical situations involving surface tension, compressibility, gravity, viscosity and large density ratios. Tests involving break-up and coalescence are considered to show the ability of the method to deal with dynamic appearance and disappearance of interfaces in an Eulerian framework.

[1]  Richard Saurel,et al.  A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation , 2001, Journal of Fluid Mechanics.

[2]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[3]  John R. Lister,et al.  Coalescence of liquid drops , 1999, Journal of Fluid Mechanics.

[4]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[5]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[6]  L. Rayleigh On the Capillary Phenomena of Jets , 1879 .

[7]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[8]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[9]  M. F. Tomé,et al.  A numerical technique for solving unsteady non-Newtonian free surface flows , 1996 .

[10]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[11]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[12]  Stéphane Popinet,et al.  A front-tracking algorithm for accurate representation of surface tension , 1999 .

[13]  Li,et al.  Two-dimensional Navier-Stokes simulation of deformation and breakup of liquid patches. , 1995, Physical review letters.

[14]  O. Metayer,et al.  Élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques Elaborating equations of state of a liquid and its vapor for two-phase flow models , 2004 .

[15]  Rémi Abgrall,et al.  Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .

[16]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[17]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[18]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[19]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[20]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[21]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[22]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[23]  Richard Saurel,et al.  Modelling detonation waves in heterogeneous energetic materials , 2004 .

[24]  David Brutin Drop impingement on a deep liquid surface: study of a crater's sinking dynamics Impact d'une goutte sur une surface liquide profonde : étude de la dynamique d'enfoncement du cratère , 2003 .

[25]  J. Caltagirone,et al.  International Journal for Numerical Methods in Fluids Efficient Solving Method for Unsteady Incompressible Interfacial Flow Problems , 2022 .

[26]  Elaine S. Oran,et al.  Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh. Memorandum report , 1988 .

[27]  J. Eggers Nonlinear dynamics and breakup of free-surface flows , 1997 .

[28]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[29]  D. J. Torres,et al.  On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method , 2002 .

[30]  Alfred Leipertz,et al.  Investigation of cavitation in real size diesel injection nozzles , 1999 .

[31]  G. Wallis One Dimensional Two-Phase Flow , 1969 .

[32]  J. O. Cruickshank Low-Reynolds-number instabilities in stagnating jet flows , 1988, Journal of Fluid Mechanics.

[33]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[34]  Philippe Marmottant,et al.  On spray formation , 2004, Journal of Fluid Mechanics.

[35]  Jonas A. Zukas,et al.  Practical aspects of numerical simulation of dynamic events: material interfaces , 2000 .

[36]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[37]  Stéphane Popinet,et al.  Bubble collapse near a solid boundary: a numerical study of the influence of viscosity , 2002, Journal of Fluid Mechanics.

[38]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[39]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[40]  Richard Saurel,et al.  A multiphase model with internal degrees of freedom: application to shock–bubble interaction , 2003, Journal of Fluid Mechanics.

[41]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[42]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[43]  O. Lebaigue,et al.  The second gradient method for the direct numerical simulation of liquid—vapor flows with phase change , 2001 .

[44]  Richard Saurel,et al.  Modelling evaporation fronts with reactive Riemann solvers , 2005 .

[45]  D. Drew Mathematical Modeling of Two-Phase Flow , 1983 .

[46]  Richard Saurel,et al.  Mathematical and numerical modeling of two-phase compressible flows with micro-inertia , 2002 .

[47]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[48]  E. Villermaux,et al.  Bursting thin liquid films , 2005, Journal of Fluid Mechanics.

[49]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[50]  Numerical study of the lift force influence on two-phase shock tube boundary layer characteristics , 2002 .

[51]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[52]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[53]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[54]  Manolis Gavaises,et al.  Visualisation of cavitation in diesel engine injectors , 2001 .

[55]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[56]  Boo Cheong Khoo,et al.  An indirect boundary element method for three-dimensional explosion bubbles , 2004 .

[57]  E. Daniel,et al.  On high‐resolution schemes for solving unsteady compressible two‐phase dilute viscous flows , 1999 .

[58]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..