Multimodel neural networks identification and failure detection of nonlinear systems

Multimodel identification and failure detection using neural networks (NN) is presented. It is an extension and application of nonlinear system identification using radial basis function NN. The state estimation error is proven to converge to zero asymptotically. Parameters of the identifier converge to the ideal parameters provided that persistency of excitation condition is fulfilled. Multiple model identification structure is analyzed, and its application to the multimodel failure detection is considered. Two simulation examples for NN identifiers are given. Simulation for intelligent multimodel failure detection using multi-neural networks identifiers is presented.

[1]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[2]  Marios M. Polycarpou,et al.  High-order neural network structures for identification of dynamical systems , 1995, IEEE Trans. Neural Networks.

[3]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[4]  Peter S. Maybeck,et al.  Reconfigurable flight control via multiple model adaptive control methods , 1991 .

[5]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[6]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[7]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[8]  Jean-Jacques E. Slotine,et al.  Stable adaptive control and recursive identification using radial Gaussian networks , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[9]  Marc Bodson,et al.  Multivariable adaptive algorithms for reconfigurable flight control , 1997, IEEE Trans. Control. Syst. Technol..

[10]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[11]  Marios M. Polycarpou,et al.  Stable adaptive neural control scheme for nonlinear systems , 1996, IEEE Trans. Autom. Control..

[12]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[13]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.