Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning

[1]  Junlong Zhu,et al.  MPCE: A Maximum Probability Based Cross Entropy Loss Function for Neural Network Classification , 2019, IEEE Access.

[2]  Jordan M. Malof,et al.  Deep learning for accelerated all-dielectric metasurface design. , 2019, Optics express.

[3]  Saeid Nahavandi,et al.  Seeded transfer learning for regression problems with deep learning , 2019, Expert Syst. Appl..

[4]  Xiang Wan,et al.  Machine‐Learning Designs of Anisotropic Digital Coding Metasurfaces , 2018, Advanced Theory and Simulations.

[5]  Michael Mrejen,et al.  Plasmonic nanostructure design and characterization via Deep Learning , 2018, Light: Science & Applications.

[6]  Li Jing,et al.  Migrating Knowledge between Physical Scenarios based on Artificial Neural Networks , 2018, ACS Photonics.

[7]  Qiang Liu,et al.  A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture , 2018, IEEE Access.

[8]  Yongmin Liu,et al.  Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. , 2018, ACS nano.

[9]  W. Cai,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[10]  Shuzhou Li,et al.  Valence Electron Density-Dependent Pseudopermittivity for Nonlocal Effects in Optical Properties of Metallic Nanoparticles , 2018 .

[11]  Peter R. Wiecha,et al.  Pushing the limits of optical information storage using deep learning , 2018, Nature Nanotechnology.

[12]  Li Jing,et al.  Nanophotonic particle simulation and inverse design using artificial neural networks , 2017, Science Advances.

[13]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[14]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[15]  Bolin Gao,et al.  On the Properties of the Softmax Function with Application in Game Theory and Reinforcement Learning , 2017, ArXiv.

[16]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[17]  Ana Díaz-Rubio,et al.  From the generalized reflection law to the realization of perfect anomalous reflectors , 2016, Science Advances.

[18]  Song Xia,et al.  Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces , 2016 .

[19]  Xiang Wan,et al.  Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams , 2016, Advanced science.

[20]  Lei Zhou,et al.  Multifunctional Microstrip Array Combining a Linear Polarizer and Focusing Metasurface , 2016, IEEE Transactions on Antennas and Propagation.

[21]  Tian Yi Chen,et al.  Field-programmable beam reconfiguring based on digitally-controlled coding metasurface , 2016, Scientific Reports.

[22]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[24]  Xiangang Luo,et al.  Principles of electromagnetic waves in metasurfaces , 2015 .

[25]  Houtong Chen,et al.  Simultaneous Control of Light Polarization and Phase Distributions Using Plasmonic Metasurfaces , 2015 .

[26]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[27]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[28]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[29]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[30]  X. Wan,et al.  Planar bifunctional Luneburg‐fisheye lens made of an anisotropic metasurface , 2014 .

[31]  Ke Wang,et al.  Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm , 2014, Scientific Reports.

[32]  Yongfeng Li,et al.  Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces , 2014 .

[33]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[34]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[35]  Xin Li,et al.  Flat metasurfaces to focus electromagnetic waves in reflection geometry. , 2012, Optics letters.

[36]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[37]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[38]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[39]  J. Chen,et al.  Generalized laws of reflection and refraction from real valued boundary conditions , 2011 .

[40]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[41]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[42]  Qi-Jun Zhang,et al.  Neural Network Inverse Modeling and Applications to Microwave Filter Design , 2008, IEEE Transactions on Microwave Theory and Techniques.

[43]  Peter Stone,et al.  Cross-domain transfer for reinforcement learning , 2007, ICML '07.

[44]  George V. Eleftheriades,et al.  Reflectionless Wide-Angle Refracting Metasurfaces , 2016, IEEE Antennas and Wireless Propagation Letters.

[45]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[46]  Rajakrishnan Rajkumar,et al.  Grammar Engineering for CCG using Ant and XSLT ∗ , 2001 .