LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version

We present block LU factorization with panel rank revealing pivoting (block LU_PRRP), a decomposition algorithm based on strong rank revealing QR panel factorization. Block LU_PRRP is more stable than Gaussian elimination with partial pivoting (GEPP), with a theoretical upper bound of the growth factor of $(1+ \tau b)^{(n/ b)-1}$, where $b$ is the size of the panel used during the block factorization, $\tau$ is a parameter of the strong rank revealing QR factorization, $n$ is the number of columns of the matrix, and for simplicity we assume that n is a multiple of b. We also assume throughout the paper that $2\leq b \ll n$. For example, if the size of the panel is $b = 64$, and $\tau = 2$, then $(1+2b)^{(n/b)-1} = (1.079)^{n-64} \ll 2^{n-1}$, where $2^{n-1}$ is the upper bound of the growth factor of GEPP. Our extensive numerical experiments show that the new factorization scheme is as numerically stable as GEPP in practice, but it is more resistant to pathological cases. The block LU_PRRP factorization d...

[1]  James Demmel,et al.  Block LU factorization , 1992 .

[2]  Dror Irony,et al.  Communication lower bounds for distributed-memory matrix multiplication , 2004, J. Parallel Distributed Comput..

[3]  G. Stewart Gauss, Statistics, and Gaussian Elimination , 1995 .

[4]  James Demmel,et al.  Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..

[5]  James Demmel,et al.  Communication Avoiding Gaussian elimination , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[6]  N. Higham,et al.  Large growth factors in Gaussian elimination with pivoting , 1989 .

[7]  H. Walker,et al.  Numerical Linear Algebra with Applications , 1994 .

[8]  N. Gould On growth in Gaussian elimination with complete pivoting , 1991 .

[9]  Stephen J. Wright A Collection of Problems for Which Gaussian Elimination with Partial Pivoting is Unstable , 1993, SIAM J. Sci. Comput..

[10]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[11]  Danny C. Sorensen,et al.  Analysis of Pairwise Pivoting in Gaussian Elimination , 1985, IEEE Transactions on Computers.

[12]  James Demmel,et al.  Minimizing Communication in Linear Algebra , 2009, ArXiv.

[13]  James Demmel,et al.  CALU: A Communication Optimal LU Factorization Algorithm , 2011, SIAM J. Matrix Anal. Appl..

[14]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[15]  R. Skeel Iterative refinement implies numerical stability for Gaussian elimination , 1980 .

[16]  Jack J. Dongarra,et al.  The LINPACK Benchmark: past, present and future , 2003, Concurr. Comput. Pract. Exp..

[17]  L. Foster The growth factor and efficiency of Gaussian elimination with rook pivoting , 1997 .

[18]  James Hardy Wilkinson,et al.  Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.

[19]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[20]  L. Foster Gaussian Elimination with Partial Pivoting Can Fail in Practice , 1994, SIAM J. Matrix Anal. Appl..

[21]  L. Trefethen,et al.  Average-case stability of Gaussian elimination , 1990 .

[22]  Laura Grigori,et al.  Adapting communication-avoiding LU and QR factorizations to multicore architectures , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).

[23]  D. W. Barron,et al.  Solution of Simultaneous Linear Equations using a Magnetic-Tape Store , 1960, Computer/law journal.

[24]  Jaeyoung Choi,et al.  Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines , 1994, Sci. Program..

[25]  H. T. Kung,et al.  I/O complexity: The red-blue pebble game , 1981, STOC '81.

[26]  Nicholas J. Higham,et al.  Reducing the influence of tiny normwise relative errors on performance profiles , 2013, TOMS.