Least‐squares finite element processes in h, p, k mathematical and computational framework for a non‐linear conservation law
暂无分享,去创建一个
J. N. Reddy | Srikanth Allu | Karan S. Surana | J. Reddy | K. Surana | S. Allu | P. Tenpas | P. W. Tenpas
[1] M. S. Mock,et al. Discrete shocks and genuine nonlinearity. , 1978 .
[2] Karan S. Surana,et al. p‐version least‐squares finite element formulation for convection‐diffusion problems , 1993 .
[3] Bruce M. Irons,et al. A version of the Aitken accelerator for computer iteration , 1969 .
[4] Bruce M. Irons,et al. A conforming quartic triangular element for plate bending , 1969 .
[5] K. S. Surana,et al. The K-Version of finite element method for nonlinear operators in bvp , 2004, Int. J. Comput. Eng. Sci..
[6] J. F. T. Pittman,et al. Isoparametric Hermite elements , 1994 .
[7] M. S. Mock,et al. On fourth-order dissipation and single conservation laws , 1976 .
[8] Ralph Menikoff,et al. Errors When Shock Waves Interact Due to Numerical Shock Width , 1994, SIAM J. Sci. Comput..
[9] Alberto Peano,et al. Hierarchies of conforming finite elements for plane elasticity and plate bending , 1976 .
[10] L. Rayleigh. Aerial Plane Waves of Finite Amplitude , 1910 .
[11] Thomas A. Manteuffel,et al. First-Order System Least Squares (FOSLS) for Convection-Diffusion Problems: Numerical Results , 1998, SIAM J. Sci. Comput..
[12] O. C. Zienkiewicz,et al. Reduced integration technique in general analysis of plates and shells , 1971 .
[13] Barbara Lee Keyfitz,et al. Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws , 1978 .
[14] Joel Smoller,et al. Contact discontinuities in quasi‐linear hyperbolic systems , 1970 .
[15] P. Lax,et al. Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[16] Karan S. Surana,et al. p‐version least‐squares finite element formulation of Burgers' equation , 1993 .
[17] Barna A. Szabó,et al. Implementation of a C1 triangular element based on the P-version of the finite element method , 1984 .
[18] B. L. Rozhdestvenskii,et al. DISCONTINUOUS SOLUTIONS OF HYPERBOLIC SYSTEMS OF QUASILINEAR EQUATIONS , 1960 .
[19] J. Reddy,et al. The k-Version of Finite Element Method for Initial Value Problems: Mathematical and Computational Framework , 2007 .
[20] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .
[21] S. K. Godunov,et al. THE PROBLEM OF A GENERALIZED SOLUTION IN THE THEORY OF QUASILINEAR EQUATIONS AND IN GAS DYNAMICS , 1962 .
[22] J. Reddy,et al. k‐version of finite element method in gas dynamics: higher‐order global differentiability numerical solutions , 2007 .
[23] I. Norman Katz,et al. The p-Version of the Finite Element Method for Problems Requiring $C^1$-Continuity , 1985 .
[24] K. S. Surana,et al. Nonweak/Strong Solutions in Gas Dynamics: A C11p-Version STLSFEF in Lagrangian Frame of Reference Using r, U, T Primitive Variables , 2001, Int. J. Comput. Eng. Sci..
[25] Thomas A. Manteuffel,et al. Numerical Conservation Properties of H(div)-Conforming Least-Squares Finite Element Methods for the Burgers Equation , 2005, SIAM J. Sci. Comput..
[26] L. R. Scott,et al. A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .
[27] K. S. Surana,et al. The k-Version of Finite Element Method for Self-Adjoint Operators in BVP , 2002, Int. J. Comput. Eng. Sci..
[28] Thomas A. Manteuffel,et al. First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..
[29] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[30] E. Hopf. On the Right Weak Solution of the Cauchy Problem for a Quasilinear Equation of First Order Final Report , 1969 .
[31] K. S. Surana,et al. Nonweak/Strong Solutions of Linear and Nonlinear Hyperbolic and Parabolic Equations Resulting from a Single Conservation Law , 2000, Int. J. Comput. Eng. Sci..
[32] Karan S. Surana,et al. Non‐weak/strong solutions in gas dynamics: a C11 p‐version STLSFEF in Lagrangian frame of reference using ρ, u, p primitive variables , 2002 .
[33] Rupak Biswas,et al. Task assignment heuristics for parallel and distributed CFD applications , 2007, Int. J. Comput. Sci. Eng..