Critical phenomena in complex networks

The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, important steps have been made toward understanding the qualitatively new critical phenomena in complex networks. The results, concepts, and methods of this rapidly developing field are reviewed. Two closely related classes of these critical phenomena are considered, namely, structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. Systems where a network and interacting agents on it influence each other are also discussed. A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned. Strong finite-size effects in these systems and open problems and perspectives are also discussed.

[1]  Alessandro Vespignani,et al.  Cut-offs and finite size effects in scale-free networks , 2003, cond-mat/0311650.

[2]  Moshe Gitterman,et al.  Small-world phenomena in physics: the Ising model , 2000 .

[3]  Changsong Zhou,et al.  Universality in the synchronization of weighted random networks. , 2006, Physical review letters.

[4]  Z Burda,et al.  Tree networks with causal structure. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Amos Maritan,et al.  Critical properties of an Ising model with infinite-range coupling , 1982 .

[7]  Kevin E. Bassler,et al.  Network dynamics: Jamming is limited in scale-free systems , 2004, Nature.

[8]  M. Ostilli Ising spin glass models versus Ising models: an effective mapping at high temperature: I. General result , 2006, cond-mat/0607498.

[9]  J. Kurths,et al.  Network synchronization, diffusion, and the paradox of heterogeneity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Sergey V. Buldyrev,et al.  The Optimal Path in a Random , 2007 .

[11]  Matteo Marsili,et al.  Phenomenological models of socioeconomic network dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Yuval Shavitt,et al.  A model of Internet topology using k-shell decomposition , 2007, Proceedings of the National Academy of Sciences.

[13]  Deok-Sun Lee,et al.  Cascading toppling dynamics on scale-free networks , 2005 .

[14]  R. Cohen,et al.  Width of percolation transition in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Mark A. Novotny,et al.  Critical behavior of ising models with random long-range (small-world) interactions , 2006 .

[16]  Alessandro Vespignani,et al.  Epidemic spreading in complex networks with degree correlations , 2003, cond-mat/0301149.

[17]  B. Waclaw,et al.  Free zero-range processes on networks , 2007, SPIE International Symposium on Fluctuations and Noise.

[18]  S Havlin,et al.  Localization transition on complex networks via spectral statistics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Neil F. Johnson,et al.  Effects of decision-making on the transport costs across complex networks , 2006, SPIE Micro + Nano Materials, Devices, and Applications.

[20]  S. Ruffo,et al.  Clustering and relaxation in Hamiltonian long-range dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Noam Berger,et al.  The diameter of long-range percolation clusters on finite cycles , 2001, Random Struct. Algorithms.

[22]  Yamir Moreno,et al.  Dynamics of jamming transitions in complex networks , 2005 .

[23]  Mark Newman,et al.  Models of the Small World , 2000 .

[24]  A. Motter,et al.  Ensemble averageability in network spectra. , 2007, Physical review letters.

[25]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  H. Stanley,et al.  Optimal paths in disordered complex networks. , 2003, Physical review letters.

[27]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Marc Timme,et al.  Does Dynamics Reflect Topology in Directed Networks , 2006, cond-mat/0610186.

[29]  Tatijana Stosˇić,et al.  Exact zero-field susceptibility of the Ising model on a Cayley tree , 1998 .

[30]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[31]  Massimo Ostilli Ising spin glass models versus Ising models: an effective mapping at high temperature: II. Applications to graphs and networks , 2006 .

[32]  M. Weigt,et al.  Minimal vertex covers on finite-connectivity random graphs: a hard-sphere lattice-gas picture. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  R. Zecchina,et al.  Ferromagnetic ordering in graphs with arbitrary degree distribution , 2002, cond-mat/0203416.

[34]  A. Motter,et al.  Synchronization is optimal in nondiagonalizable networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  S. Redner,et al.  Infinite-order percolation and giant fluctuations in a protein interaction network. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Kazuyuki Tanaka Statistical-mechanical approach to image processing , 2002 .

[37]  David Strauss On a general class of models for interaction , 1986 .

[38]  Jae Dong Noh Percolation transition in networks with degree-degree correlation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Michael Chertkov,et al.  Loop series for discrete statistical models on graphs , 2006, ArXiv.

[40]  M. Rosvall,et al.  Self-organization of structures and networks from merging and small-scale fluctuations , 2004 .

[41]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[42]  S. Havlin,et al.  How to calculate the fractal dimension of a complex network: the box covering algorithm , 2007, cond-mat/0701216.

[43]  Petter Holme,et al.  Scale-free networks with a large- to hypersmall-world transition , 2007 .

[44]  Stefan Thurner,et al.  Socio-economical dynamics as a solvable spin system on co-evolving networks , 2007, 0707.3085.

[45]  T. Ichinomiya Frequency synchronization in a random oscillator network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Alexei Vazquez,et al.  Spreading dynamics on small-world networks with connectivity fluctuations and correlations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  R. Peierls On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[48]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[49]  P Svenson Freezing in random graph ferromagnets. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[51]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[52]  D ben-Avrahamt,et al.  Saturation transition in a monomer-monomer model of heterogeneous catalysis , 2001 .

[53]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[54]  Charles U. Martel,et al.  Analyzing Kleinberg's (and other) small-world Models , 2004, PODC '04.

[55]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[56]  P. Chandra,et al.  Glassy behaviour in the ferromagnetic Ising model on a Cayley tree , 1995 .

[57]  A. Montanari,et al.  How to compute loop corrections to the Bethe approximation , 2005, cond-mat/0506769.

[58]  B Kahng,et al.  Synchronization transition of heterogeneously coupled oscillators on scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  D. Mukamel,et al.  Two-spin correlation function of spin 12 Ising model on a bethe lattice , 1974 .

[60]  D. Zanette,et al.  Coevolution of agents and networks: Opinion spreading and community disconnection , 2006, cond-mat/0603295.

[61]  Stefan Thurner,et al.  Solvable spin model on dynamical networks , 2007 .

[62]  L F Lago-Fernández,et al.  Fast response and temporal coherent oscillations in small-world networks. , 1999, Physical review letters.

[63]  K-I Goh,et al.  Skeleton and fractal scaling in complex networks. , 2006, Physical review letters.

[64]  J. Zittartz,et al.  New Type of Phase Transition , 1974 .

[65]  Béla Bollobás,et al.  Random Graphs , 1985 .

[66]  M. Newman,et al.  Nonequilibrium phase transition in the coevolution of networks and opinions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Petr Plecháč,et al.  Equivalence of ferromagnetic spin models on trees and random graphs , 1998 .

[68]  Vittorio Loreto,et al.  Non-equilibrium phase transition in negotiation dynamics , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Reuven Cohen,et al.  Percolation critical exponents in scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Thierry Mora,et al.  Clustering of solutions in the random satisfiability problem , 2005, Physical review letters.

[71]  J. Kert'esz,et al.  Failures and avalanches in complex networks , 2006, cond-mat/0605461.

[72]  Jae Dong Noh Stationary and dynamical properties of a zero-range process on scale-free networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  S. Redner,et al.  Saturation transition in a monomer-monomer model of heterogeneous catalysis , 1990 .

[74]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[75]  D. Parisi,et al.  Comparison of voter and Glauber ordering dynamics on networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[77]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Z Burda,et al.  Network transitivity and matrix models. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[80]  G. Parisi,et al.  Loop expansion around the Bethe–Peierls approximation for lattice models , 2005, cond-mat/0512529.

[81]  J. Kertész,et al.  Structural transitions in scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Hernán D Rozenfeld,et al.  Percolation in hierarchical scale-free nets. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  B Waclaw,et al.  Condensation in zero-range processes on inhomogeneous networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Shore,et al.  Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations. , 1992, Physical review letters.

[85]  M. Newman,et al.  Exact solution of site and bond percolation on small-world networks. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[86]  Toby Walsh,et al.  Search in a Small World , 1999, IJCAI.

[87]  R. Pastor-Satorras,et al.  Diffusion-annihilation processes in complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  T. Vicsek,et al.  Topological phase transitions of random networks , 2003, cond-mat/0306170.

[89]  R. Guimerà,et al.  Modularity from fluctuations in random graphs and complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  I. M. Sokolov,et al.  Firewalls, Disorder, and Percolation in Epidemics , 2001, cond-mat/0106450.

[91]  E Ben-Naim,et al.  Size of outbreaks near the epidemic threshold. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  B Kahng,et al.  Spin-glass phase transition on scale-free networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  D. Bernard,et al.  Maximal entropy random networks with given degree distribution , 2002 .

[94]  Duncan J. Watts,et al.  Book Review: Small Worlds. The Dynamics of Networks Between Order and Randomness , 2000 .

[95]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[96]  P. Grassberger,et al.  Reggeon field theory (Schlögl's first model) on a lattice: Monte Carlo calculations of critical behaviour , 1979 .

[97]  Hyunggyu Park,et al.  Collective synchronization in spatially extended systems of coupled oscillators with random frequencies. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Ovidiu Costin,et al.  Infinite-order phase transition in a classical spin system , 1990 .

[99]  R. Tsien,et al.  Specificity and Stability in Topology of Protein Networks , 2022 .

[100]  Alessandro Vespignani,et al.  Evolution and Structure of the Internet: A Statistical Physics Approach , 2004 .

[101]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[102]  J. Kurths,et al.  Enhancing complex-network synchronization , 2004, cond-mat/0406207.

[103]  A. Barab Deterministic scale-free networks , 2007 .

[104]  Ricard V. Solé,et al.  Phase Transitions in a Model of Internet Traffic , 2000 .

[105]  M R Evans,et al.  Condensation transitions in a model for a directed network with weighted links. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  A. Mikhailov,et al.  Entrainment of randomly coupled oscillator networks by a pacemaker. , 2004, Physical review letters.

[107]  G. J. Rodgers,et al.  Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  J. Jost,et al.  Spectral properties and synchronization in coupled map lattices. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  S N Dorogovtsev,et al.  Berezinskii-Kosterlitz-Thouless-like transition in the Potts model on an inhomogeneous annealed network. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  Huan Zhang,et al.  An efficient approach of controlling traffic congestion in scale-free networks , 2006, ArXiv.

[111]  K. Goh,et al.  Universal behavior of load distribution in scale-free networks. , 2001, Physical review letters.

[112]  A. Pluchino,et al.  Olami-Feder-Christensen model on different networks , 2005, cond-mat/0509808.

[113]  R. Pastor-Satorras,et al.  Routes to thermodynamic limit on scale-free networks. , 2007, Physical review letters.

[114]  W. O'Reilly Magnetic models , 1975, Nature.

[115]  Zonghua Liu,et al.  Condensation in a zero range process on weighted scale-free networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  M. Evans,et al.  Nonequilibrium statistical mechanics of the zero-range process and related models , 2005, cond-mat/0501338.

[117]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[118]  D. Stauffer,et al.  Order-disorder phase transition in a cliquey social network , 2007 .

[119]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[120]  I. M. Sokolov,et al.  Epidemics, disorder, and percolation , 2003, cond-mat/0301394.

[121]  Neil F. Johnson,et al.  Effects of decision-making on the transport costs across complex networks , 2006 .

[122]  Yong Yu,et al.  Congestion-gradient driven transport on complex networks , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[123]  R. Zecchina,et al.  Polynomial iterative algorithms for coloring and analyzing random graphs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[124]  M Leone,et al.  Trading interactions for topology in scale-free networks. , 2005, Physical review letters.

[125]  Jun Ohkubo,et al.  Statistical-mechanical iterative algorithms on complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[126]  Beom Jun Kim,et al.  Phase transition in the Ising model on a small-world network with distance-dependent interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[127]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[128]  Alessandro Vespignani,et al.  Dynamical Patterns of Epidemic Outbreaks in Complex Heterogeneous Networks , 1999 .

[129]  Pérez,et al.  Synchronization, diversity, and topology of networks of integrate and fire oscillators , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[130]  S. Coulomb,et al.  Asymmetric evolving random networks , 2002, cond-mat/0212371.

[131]  Sethna,et al.  Avalanches, Barkhausen noise, and plain old criticality. , 1995, Physical review letters.

[132]  J. Hopcroft,et al.  Are randomly grown graphs really random? , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[134]  S Lübeck,et al.  Finite-size scaling of directed percolation above the upper critical dimension. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  Toru Ohira,et al.  PHASE TRANSITION IN A COMPUTER NETWORK TRAFFIC MODEL , 1998 .

[136]  Paolo De Los Rios,et al.  Interfaces and the edge percolation map of random directed networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[137]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[138]  M. Marsili,et al.  Loops of any size and Hamilton cycles in random scale-free networks , 2005, cond-mat/0502552.

[139]  Krzysztof Suchecki,et al.  Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  Reuven Cohen,et al.  The Optimal Pathin an Erdős-Rényi Random Graph , 2004 .

[141]  M Bauer,et al.  Exactly solvable model with two conductor-insulator transitions driven by impurities. , 2001, Physical review letters.

[142]  Béla Bollobás,et al.  Clique percolation , 2009, Random Struct. Algorithms.

[143]  S. N. Dorogovtsev,et al.  Metric structure of random networks , 2002, cond-mat/0210085.

[144]  A.C.C. Coolen,et al.  Replicated transfer matrix analysis of Ising spin models on 'small world' lattices , 2004 .

[145]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[146]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[147]  Kwon,et al.  Ising spin glass at zero temperature on the Bethe lattice. , 1988, Physical review. B, Condensed matter.

[148]  Beom Jun Kim,et al.  Factors that predict better synchronizability on complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[149]  S N Dorogovtsev,et al.  Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the Ising model on a growing network. , 2005, Physical review letters.

[150]  Christian Borgs,et al.  The Birth of the Infinite Cluster:¶Finite-Size Scaling in Percolation , 2001 .

[151]  F. Krzakala,et al.  Spin glass models with ferromagnetically biased couplings on the Bethe lattice: analytic solutions and numerical simulations , 2004, cond-mat/0403053.

[152]  Alessandro Vespignani,et al.  K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases , 2005, Networks Heterog. Media.

[153]  A. Pekalski,et al.  Ising model on a small world network. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[154]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[155]  Michael Chertkov,et al.  Loop Calculus Helps to Improve Belief Propagation and Linear Programming Decodings of Low-Density-Parity-Check Codes , 2006, ArXiv.

[156]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[157]  H. Bethe Statistical Theory of Superlattices , 1935 .

[158]  John W. Fisher,et al.  Loopy Belief Propagation: Convergence and Effects of Message Errors , 2005, J. Mach. Learn. Res..

[159]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[160]  Márton Karsai,et al.  Nonequilibrium phase transitions and finite-size scaling in weighted scale-free networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[161]  Benny Sudakov,et al.  The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.

[162]  T. E. Harris Contact Interactions on a Lattice , 1974 .

[163]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[164]  J. Almeida,et al.  Replica-symmetric solutions of a dilute Ising ferromagnet in a random field , 2005 .

[165]  Alexei Vazquez,et al.  Computational complexity arising from degree correlations in networks , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[166]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[167]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[168]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[169]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Reuven Cohen,et al.  Stability and topology of scale-free networks under attack and defense strategies. , 2005, Physical review letters.

[171]  P. L. Krapivsky,et al.  Universal properties of growing networks , 2004 .

[172]  M. Newman Properties of highly clustered networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[173]  M. Newman Random Graphs as Models of Networks , 2002, cond-mat/0202208.

[174]  Yoseph Imry,et al.  Random-Field Instability of the Ordered State of Continuous Symmetry , 1975 .

[175]  Hiroshi Kori,et al.  Strong effects of network architecture in the entrainment of coupled oscillator systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[176]  R. Durrett Random Graph Dynamics: References , 2006 .

[177]  Illés J. Farkas,et al.  Equilibrium Statistical Mechanicsof Network Structures , 2004 .

[178]  Michael Hinczewski,et al.  Inverted Berezinskii-Kosterlitz-Thouless singularity and high-temperature algebraic order in an Ising model on a scale-free hierarchical-lattice small-world network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[179]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[180]  Marc Timme,et al.  Breaking synchrony by heterogeneity in complex networks. , 2003, Physical review letters.

[181]  M. Pretti,et al.  Stable propagation algorithm for the minimization of the Bethe free energy , 2003 .

[182]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[183]  M E J Newman,et al.  Identity and Search in Social Networks , 2002, Science.

[184]  M. Marsili,et al.  Potts model on random trees , 2005 .

[185]  Hyunggyu Park,et al.  Finite-size scaling in complex networks. , 2007, Physical review letters.

[186]  C. F. Baillie,et al.  Spin Glasses on Thin Graphs , 1995 .

[187]  B. Söderberg General formalism for inhomogeneous random graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[188]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[189]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[190]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[191]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[192]  S. N. Dorogovtsev,et al.  Spectra of complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[193]  Johannes Berg,et al.  Correlated random networks. , 2002, Physical review letters.

[194]  M. Bauer,et al.  Core percolation in random graphs: a critical phenomena analysis , 2001, cond-mat/0102011.

[195]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[196]  Arne Traulsen,et al.  Coevolution of strategy and structure in complex networks with dynamical linking. , 2006, Physical review letters.

[197]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.

[198]  B. Huberman,et al.  Social Structure and Opinion Formation , 2004, cond-mat/0407252.

[199]  V Latora,et al.  Analysis of self-organized criticality in the Olami-Feder-Christensen model and in real earthquakes. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[200]  Goldschmidt,et al.  Replica symmetry breaking in the spin-glass model on lattices with finite connectivity: Application to graph partitioning. , 1990, Physical review. B, Condensed matter.

[201]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[202]  A. Rapoport,et al.  Connectivity of random nets , 1951 .

[203]  Alexander K. Hartmann,et al.  Ground state of the Bethe lattice spin glass and running time of an exact optimization algorithm , 2003 .

[204]  Hans J Herrmann,et al.  Coherence in scale-free networks of chaotic maps. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[205]  Ming Tang,et al.  An adaptive routing strategy for packet delivery in complex networks , 2007, ArXiv.

[206]  S. N. Dorogovtsev,et al.  Size-dependent degree distribution of a scale-free growing network. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[207]  K Sneppen,et al.  Navigating networks with limited information. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[208]  Shlomo Havlin,et al.  Transport and percolation theory in weighted networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[209]  Tao Zhou,et al.  Traffic dynamics based on local routing protocol on a scale-free network. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[210]  B Waclaw,et al.  Balls-in-boxes condensation on networks. , 2007, Chaos.

[211]  Jonathan P K Doye,et al.  Self-similar disk packings as model spatial scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[212]  Reuven Cohen,et al.  Searching complex networks efficiently with minimal information , 2006 .

[213]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[214]  S. Havlin,et al.  Structural properties of scale‐free networks , 2005 .

[215]  O Hovorka,et al.  Nonconverging hysteresis cycles in random spin networks. , 2008, Physical review letters.

[216]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[217]  Haijun Zhou,et al.  Message passing for vertex covers , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[218]  Lada A. Adamic,et al.  Local Search in Unstructured Networks , 2002, ArXiv.

[219]  Marc Timme,et al.  Topological speed limits to network synchronization. , 2003, Physical review letters.

[220]  Joel C. Miller,et al.  Epidemic size and probability in populations with heterogeneous infectivity and susceptibility. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[221]  Alessandro Vespignani,et al.  Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions , 2007, PLoS medicine.

[222]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[223]  Sergey N. Dorogovtsev,et al.  k-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[224]  A. B. Harris,et al.  Nature of the "Griffiths" Singularity in Dilute Magnets , 1975 .

[225]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[226]  Shlomo Havlin,et al.  Improving immunization strategies. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[227]  Raúl Toral,et al.  Nonequilibrium transitions in complex networks: a model of social interaction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[228]  Riccardo Zecchina,et al.  Survey propagation as local equilibrium equations , 2003, ArXiv.

[229]  Z. Burda,et al.  Perturbing general uncorrelated networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[230]  Tamás Vicsek,et al.  The Critical Point of k-Clique Percolation in the Erdős–Rényi Graph , 2007 .

[231]  B. Tadić,et al.  Avalanches in complex spin networks , 2007 .

[232]  A Pagnani,et al.  Metastable configurations on the Bethe lattice. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[233]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[234]  M. Biskup On the scaling of the chemical distance in long-range percolation models , 2003, math/0304418.

[235]  Z Burda,et al.  Wealth condensation in pareto macroeconomies. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[236]  I M Sokolov,et al.  Finite-size effects in Barabási-Albert growing networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[237]  Hans J Herrmann,et al.  Magnetic models on Apollonian networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[238]  F Iglói,et al.  Rounding of first-order phase transitions and optimal cooperation in scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[239]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[240]  D. Thouless,et al.  Spin-glass on a Bethe lattice. , 1986, Physical review letters.

[241]  Svante Janson,et al.  The largest component in a subcritical random graph with a power law degree distribution , 2007, 0708.4404.

[242]  S. Redner,et al.  Finiteness and fluctuations in growing networks , 2002, cond-mat/0207107.

[243]  C. Herrero,et al.  Ising model in scale-free networks: a Monte Carlo simulation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[244]  Beom Jun Kim,et al.  Comment on "Ising model on a small world network". , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[245]  Mario di Bernardo,et al.  Synchronizability and Synchronization Dynamics of Weighed and Unweighed Scale Free Networks with Degree Mixing , 2007, Int. J. Bifurc. Chaos.

[246]  Ovidiu Costin,et al.  Limit probability distributions for an infinite-order phase transition model , 1991 .

[247]  Bosiljka Tadić,et al.  Magnetization reversal in spin patterns with complex geometry. , 2005, Physical review letters.

[248]  A. Barrat,et al.  Consensus formation on adaptive networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[249]  B. Kahng,et al.  Sandpile avalanche dynamics on scale-free networks , 2004 .

[250]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[251]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[252]  P. Mottishaw,et al.  Replica Symmetry Breaking and the Spin-Glass on a Bethe Lattice , 1987 .

[253]  S. Strogatz Exploring complex networks , 2001, Nature.

[254]  Béla Bollobás,et al.  Slow emergence of the giant component in the growing m‐out graph , 2005, Random Struct. Algorithms.

[255]  B. Kahng,et al.  Intrinsic degree-correlations in the static model of scale-free networks , 2006 .

[256]  Petter Holme,et al.  Network bipartivity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[257]  Alan M. Frieze,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998, Random Struct. Algorithms.

[258]  A. J. Liu,et al.  The onset of jamming as the sudden emergence of an infinite k-core cluster , 2004 .

[259]  Florent Krzakala,et al.  Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[260]  Ingemar Nåsell,et al.  Stochastic models of some endemic infections. , 2002, Mathematical biosciences.

[261]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[262]  Damian H. Zanette,et al.  Coevolution of agents and networks in an epidemiological model , 2007, 0707.1249.

[263]  Thomas Petermann,et al.  Role of clustering and gridlike ordering in epidemic spreading. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[264]  M. Serrano,et al.  Percolation and epidemic thresholds in clustered networks. , 2006, Physical review letters.

[265]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[266]  Arnab Chatterjee,et al.  Phase transitions in an Ising model on a Euclidean network. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[267]  D. Stauffer,et al.  Ising model simulation in directed lattices and networks , 2006 .

[268]  James P. Sethna,et al.  Zero-temperature hysteresis in the random-field Ising model on a Bethe lattice , 1996 .

[269]  J.P.L. Hatchett,et al.  Statics and dynamics of the Lebwohl–Lasher model in the Bethe approximation , 2007 .

[270]  Kanter,et al.  Mean-field theory of spin-glasses with finite coordination number. , 1987, Physical review letters.

[271]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[272]  A. Hartmann Phase Transitions in Combinatorial Optimization Problems - Basics, Algorithms and Statistical Mechanics , 2005 .

[273]  M. AizenmanS,et al.  Metastability effects in bootstrap percolation ? , 2001 .

[274]  S. N. Dorogovtsev,et al.  Critical phenomena in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[275]  Haijun Zhou,et al.  Vertex cover problem studied by cavity method: Analytics and population dynamics , 2003 .

[276]  M Leone,et al.  Criticality on networks with topology-dependent interactions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[277]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[278]  D. A. Johnston,et al.  Why Loops Don't Matter , 1997 .

[279]  Adilson E. Motter,et al.  Bounding network spectra for network design , 2007, 0705.0089.

[280]  B. Derrida Random-energy model: An exactly solvable model of disordered systems , 1981 .

[281]  Peter Grassberger,et al.  Localization transition of biased random walks on random networks. , 2007, Physical review letters.

[282]  Z. Burda,et al.  Finite size scaling of the balls in boxes model , 2000 .

[283]  H. Falk,et al.  Ising spin system on a Cayley tree: Correlation decomposition and phase transition , 1975 .

[284]  P. Grassberger On the critical behavior of the general epidemic process and dynamical percolation , 1983 .

[285]  Hyunsuk Hong,et al.  Entrainment transition in populations of random frequency oscillators. , 2007, Physical review letters.

[286]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[287]  Deok-Sun Lee Synchronization transition in scale-free networks: clusters of synchrony. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[288]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[289]  Hyunggyu Park,et al.  Collective phase synchronization in locally coupled limit-cycle oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[290]  Y. Moreno,et al.  Disease spreading in structured scale-free networks , 2002, cond-mat/0210362.

[291]  L. Gallos,et al.  Absence of kinetic effects in reaction-diffusion processes in scale-free networks. , 2004, Physical review letters.

[292]  M E J Newman,et al.  Component sizes in networks with arbitrary degree distributions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[293]  M. Newman,et al.  Statistical mechanics of networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[294]  V. Berezinsky,et al.  Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems , 1970 .

[295]  B. Kahng,et al.  Geometric fractal growth model for scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[296]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[297]  C. Fortuin,et al.  Phase transitions in lattice systems with random local properties , 1969 .

[298]  C Domb,et al.  Random field Ising model on the Bethe lattice , 1984 .

[299]  A. Barabasi,et al.  Halting viruses in scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[300]  Alessandro Vespignani,et al.  Absence of epidemic threshold in scale-free networks with degree correlations. , 2002, Physical review letters.

[301]  R. Pastor-Satorras,et al.  Epidemic spreading in correlated complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[302]  Jon M. Kleinberg,et al.  Navigation in a small world , 2000, Nature.

[303]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[304]  Hans J. Herrmann,et al.  Apollonian networks , 2004, cond-mat/0406295.

[305]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[306]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[307]  Mario di Bernardo,et al.  Effects of Degree Correlation on the Synchronization of Networks of oscillators , 2007, Int. J. Bifurc. Chaos.

[308]  Reinhard Lipowsky,et al.  Dynamic pattern evolution on scale-free networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[309]  M. A. de Menezes,et al.  Shortest paths on systems with power-law distributed long-range connections. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[310]  Mats G. Nordahl,et al.  Relaxation in graph coloring and satisfiability problems , 1998, ArXiv.

[311]  D. Garlaschelli,et al.  Self-organized network evolution coupled to extremal dynamics , 2006, cond-mat/0611201.

[312]  N. S. Skantzos,et al.  Finitely connected vector spin systems with random matrix interactions , 2005, cond-mat/0504690.

[313]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[314]  Alex Arenas,et al.  Paths to synchronization on complex networks. , 2006, Physical review letters.

[315]  T. Vicsek,et al.  Clique percolation in random networks. , 2005, Physical review letters.

[316]  A. Fronczak,et al.  Biased random walks in complex networks: the role of local navigation rules. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[317]  M. Newman,et al.  Percolation and epidemics in a two-dimensional small world. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[318]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[319]  Alexander K Hartmann,et al.  Clustering analysis of the ground-state structure of the vertex-cover problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[320]  Blatt,et al.  Superparamagnetic clustering of data. , 1998, Physical review letters.

[321]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[322]  T. Schneider,et al.  Random-field instability of the ferromagnetic state , 1977 .

[323]  R. Lyons Random Walks and Percolation on Trees , 1990 .

[324]  Walter Willinger,et al.  Scaling phenomena in the Internet: Critically examining criticality , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[325]  Russell Lyons,et al.  Biased random walks on Galton–Watson trees , 1996 .

[326]  Albert-László Barabási,et al.  Emergence of scaling in complex networks , 2005 .

[327]  C. Domb,et al.  On the theory of cooperative phenomena in crystals , 1960 .

[328]  Illés Farkas,et al.  Statistical mechanics of topological phase transitions in networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[329]  Amnon Aharony,et al.  Tricritical points in systems with random fields , 1978 .

[330]  I. Farkas,et al.  Equilibrium statistical mechanics of network structures , 2004 .

[331]  H. Herrmann,et al.  Self-organized criticality on small world networks , 2001, cond-mat/0110239.

[332]  Eric Bonabeau,et al.  Sandpile dynamics on random graphs , 1995 .

[333]  S. N. Dorogovtsev,et al.  Anomalous percolation properties of growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[334]  Reuven Cohen,et al.  Graph partitioning induced phase transitions. , 2007, Physical review letters.

[335]  A Díaz-Guilera,et al.  Communication in networks with hierarchical branching. , 2001, Physical review letters.

[336]  R.V.Kulkarni,et al.  Evolutionary dynamics in the Bak-Sneppen model on small-world networks , 1999, cond-mat/9905066.

[337]  M. Hastings,et al.  Mean-field and anomalous behavior on a small-world network. , 2003, Physical review letters.

[338]  S. Boccaletti,et al.  Synchronization is enhanced in weighted complex networks. , 2005, Physical review letters.

[339]  Xin-Jian Xu,et al.  Excitable Greenberg-Hastings cellular automaton model on scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[340]  H. Matsuda,et al.  Infinite Susceptibility without Spontaneous Magnetization*) --Exact Properties of the Ising Model on the Cayley Tree-- , 1974 .

[341]  Z. Burda,et al.  Statistical ensemble of scale-free random graphs. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[342]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[343]  M. Ožana Incipient spanning cluster on small-world networks , 2001 .

[344]  A. E. Allahverdyan,et al.  Statistical networks emerging from link-node interactions , 2006 .

[345]  Giorgio Parisi,et al.  k-core percolation in four dimensions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[346]  S N Dorogovtsev Renormalization group for evolving networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[347]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[348]  Alejandro D Sánchez,et al.  Nonequilibrium phase transitions in directed small-world networks. , 2002, Physical review letters.

[349]  A. Barabasi,et al.  Percolation in directed scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[350]  R. May,et al.  Infection dynamics on scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[351]  A. Lichtenberg,et al.  A First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems , 1996 .

[352]  Adilson E Motter,et al.  Local structure of directed networks. , 2007, Physical review letters.

[353]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[354]  R. Pastor-Satorras,et al.  Non-mean-field behavior of the contact process on scale-free networks. , 2005, Physical review letters.

[355]  Alexander K. Hartmann,et al.  The number of guards needed by a museum: A phase transition in vertex covering of random graphs , 2000, Physical review letters.

[356]  Ginestra Bianconi,et al.  Scale-free networks with an exponent less than two. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[357]  Irwin Oppenheim,et al.  Decay of correlations. III. Relaxation of spin correlations and distribution functions in the one-dimensional ising lattice , 1970 .

[358]  D. ben-Avraham,et al.  Diffusion-limited one-species reactions in the Bethe lattice , 2006, cond-mat/0612089.

[359]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[360]  Isaac Pérez Castillo,et al.  Cavity approach for real variables on diluted graphs and application to synchronization in small-world lattices. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[361]  M Chavez,et al.  Degree mixing and the enhancement of synchronization in complex weighted networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[362]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[363]  S. N. Dorogovtsev,et al.  Complex networks created by aggregation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[364]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[365]  Hyunsuk Hong,et al.  Finite-size scaling of synchronized oscillation on complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[366]  Riccardo Zecchina,et al.  Threshold values of random K‐SAT from the cavity method , 2003, Random Struct. Algorithms.

[367]  Olle Häggström,et al.  Zero-temperature dynamics for the ferromagnetic Ising model on random graphs , 2002 .

[368]  Reuven Cohen,et al.  Limited path percolation in complex networks. , 2007, Physical review letters.

[369]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[370]  Petter Minnhagen,et al.  Self organized scale-free networks from merging and regeneration , 2005 .

[371]  J. Robins,et al.  Second look at the spread of epidemics on networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[372]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[373]  Beom Jun Kim Performance of networks of artificial neurons: the role of clustering. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[374]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[375]  Ralph Linsker,et al.  Synchronous neural activity in scale-free network models versus random network models. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[376]  Jürgen Kurths,et al.  Synchronization in small-world networks. , 2008, Chaos.

[377]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[378]  V. Eguíluz,et al.  Conservation laws for the voter model in complex networks , 2004, cond-mat/0408101.

[379]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[380]  Uncorrelated random networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[381]  Sergey N. Dorogovtsev,et al.  k-core architecture and k-core percolation on complex networks , 2006 .

[382]  R. T. Scalettar Critical properties of an Ising model with dilute long range interactions , 1991 .

[383]  Sergey N. Dorogovtsev,et al.  Principles of statistical mechanics of random networks , 2002, ArXiv.

[384]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[385]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[386]  M. Copelli,et al.  Excitable scale free networks , 2007, q-bio/0703004.

[387]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[388]  B. Kahng,et al.  Evolution of scale-free random graphs: Potts model formulation , 2004 .

[389]  R. Lyons The Ising model and percolation on trees and tree-like graphs , 1989 .

[390]  Z. Burda,et al.  Condensation in the Backgammon model , 1997 .

[391]  G Korniss,et al.  Roughness scaling for Edwards-Wilkinson relaxation in small-world networks. , 2004, Physical review letters.

[392]  M. Evans,et al.  Critical phase in nonconserving zero-range processes and rewiring networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[393]  E Oh,et al.  Modular synchronization in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[394]  M. A. Novotny,et al.  Monte Carlo Simulation of Small-World Models with Weak Long-Range Interactions , 2006 .

[395]  Krapivsky Kinetics of monomer-monomer surface catalytic reactions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[396]  Yamir Moreno,et al.  Fitness for synchronization of network motifs , 2004, cond-mat/0404054.

[397]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[398]  Alessandro Vespignani,et al.  k-core decomposition: a tool for the analysis of large scale Internet graphs , 2005, ArXiv.

[399]  B Kahng,et al.  Sandpile on scale-free networks. , 2003, Physical review letters.

[400]  Thilo Gross,et al.  Adaptive coevolutionary networks: a review , 2007, Journal of The Royal Society Interface.

[401]  Alexandre Arenas,et al.  Optimal network topologies for local search with congestion , 2002, Physical review letters.

[402]  Riccardo Zecchina,et al.  Statistical mechanics of combinatorial auctions. , 2006, Physical review letters.

[403]  Alessandro Vespignani,et al.  Epidemic dynamics in finite size scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[404]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[405]  G. J. Rodgers,et al.  Transport on Complex Networks: Flow, Jamming and Optimization , 2007, Int. J. Bifurc. Chaos.

[406]  R Toral,et al.  Exact solution of Ising model on a small-world network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[407]  M. Bousquet-Mélou,et al.  Exactly Solved Models , 2009 .

[408]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[409]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[410]  U. Brandes,et al.  Maximizing Modularity is hard , 2006, physics/0608255.

[411]  Hyunggyu Park,et al.  Comment on "non-mean-field behavior of the contact process on scale-free networks". , 2006, Physical review letters.

[412]  Andrea Montanari,et al.  Two Lectures on Iterative Coding and Statistical Mechanics , 2005 .

[413]  M. Serrano,et al.  Generalized percolation in random directed networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[414]  S. N. Dorogovtsev,et al.  Giant strongly connected component of directed networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[415]  Mohammad Taghi Hajiaghayi,et al.  Random MAX SAT, random MAX CUT, and their phase transitions , 2003, SODA '03.

[416]  P. McGraw,et al.  Analysis of nonlinear synchronization dynamics of oscillator networks by Laplacian spectral methods. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[417]  M. Newman,et al.  Epidemics and percolation in small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[418]  G. Toulouse,et al.  Ideal Bose Einstein condensation and disorder effects , 1974 .

[419]  Y. Lai,et al.  Abnormal synchronization in complex clustered networks. , 2006, Physical review letters.

[420]  A. Arenas,et al.  Synchronization processes in complex networks , 2006, nlin/0610057.

[421]  Alessandro Vespignani,et al.  Immunization of complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[422]  Víctor M Eguíluz,et al.  Coevolution of dynamical states and interactions in dynamic networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[423]  G. Bianconi,et al.  Number of loops of size h in growing scale-free networks. , 2002, Physical review letters.

[424]  Petter Holme,et al.  Congestion and Centrality in Traffic Flow on Complex Networks , 2003, Adv. Complex Syst..

[425]  K. Goh,et al.  Robustness of the avalanche dynamics in data-packet transport on scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[426]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[427]  P Minnhagen,et al.  XY model in small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[428]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[429]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[430]  David Lancaster Cluster growth in two growing network models , 2002 .

[431]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[432]  Daniel Fernholz Cores and Connectivity in Sparse Random Graphs , 2004 .

[433]  Jürgen Jost,et al.  Delays, connection topology, and synchronization of coupled chaotic maps. , 2004, Physical review letters.

[434]  Daniele Vilone,et al.  Solution of voter model dynamics on annealed small-world networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[435]  O Bénichou,et al.  Comment on "localization transition of biased random walks on random networks". , 2007, Physical review letters.

[436]  F. Y. Wu The Potts model , 1982 .

[437]  R. Pastor-Satorras,et al.  Castellano and Pastor-Satorras Reply: , 2007 .

[438]  M Ausloos,et al.  Uncovering collective listening habits and music genres in bipartite networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[439]  K. Kaski,et al.  Limited resolution in complex network community detection with Potts model approach , 2006 .

[440]  G. Bianconi Mean field solution of the Ising model on a Barabási–Albert network , 2002, cond-mat/0204455.

[441]  S. Thurner,et al.  Information super-diffusion on structured networks , 2003, cond-mat/0307670.

[442]  Adilson E. Motter,et al.  Maximum performance at minimum cost in network synchronization , 2006, cond-mat/0609622.

[443]  Sang Hoon Lee,et al.  Random field Ising model on networks with inhomogeneous connections. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[444]  Alessandro Vespignani,et al.  Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. , 2003, Physical review letters.

[445]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[446]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[447]  T. P. Eggarter Cayley trees, the Ising problem, and the thermodynamic limit , 1974 .

[448]  Hawoong Jeong,et al.  Random field Ising model and community structure in complex networks , 2005, cond-mat/0502672.

[449]  S. N. Dorogovtsev,et al.  Potts model on complex networks , 2004 .

[450]  S. N. Dorogovtsev,et al.  Structure of growing networks with preferential linking. , 2000, Physical review letters.

[451]  Gade,et al.  Synchronous chaos in coupled map lattices with small-world interactions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[452]  Y. Moreno,et al.  Epidemic outbreaks in complex heterogeneous networks , 2001, cond-mat/0107267.

[453]  Marián Boguñá,et al.  Clustering in complex networks. I. General formalism. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[454]  Claudio Castellano,et al.  Incomplete ordering of the voter model on small-world networks , 2003 .

[455]  Erik Luijten,et al.  Classical critical behavior of spin models with long-range interactions , 1997 .

[456]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[457]  Juergen Kurths,et al.  Weighted networks are more synchronizable: how and why , 2005 .

[458]  Sergey N. Dorogovtsev,et al.  Correlations in interacting systems with a network topology , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[459]  D. Stauffer,et al.  Ferromagnetic phase transition in Barabási–Albert networks , 2001, cond-mat/0112312.

[460]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[461]  Takashi Ichinomiya Path-integral approach to dynamics in a sparse random network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[462]  Alex Arenas,et al.  Synchronizability determined by coupling strengths and topology on complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[463]  C. Herrero Ising model in small-world networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[464]  A. Bray,et al.  Phase diagrams for dilute spin glasses , 1985 .

[465]  Kimmo Kaski,et al.  Sandpiles on Watts-Strogatz type small-worlds , 2005 .

[466]  Goldschmidt Yy,et al.  Replica symmetry breaking in the spin-glass model on lattices with finite connectivity: Application to graph partitioning. , 1990 .

[467]  Jerrold W. Grossman Small Worlds: The Dynamics of Networks between Order and Randomness. By Duncan J. Watts , 2000 .

[468]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[469]  B Kahng,et al.  Extremal dynamics on complex networks: analytic solutions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[470]  S Redner,et al.  Dynamics of social balance on networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[471]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[472]  Jae Dong Noh,et al.  Complete condensation in a zero range process on scale-free networks. , 2005, Physical review letters.

[473]  Alan M. Frieze,et al.  On the independence number of random graphs , 1990, Discret. Math..

[474]  S. Havlin,et al.  Supporting Information for “ Scaling theory of transport in complex networks ” , 2007 .

[475]  P. Białas,et al.  Science of Complex Networks: From Biology to the Internet and WWW , 2005 .

[476]  Yamir Moreno,et al.  The Bak-Sneppen model on scale-free networks , 2001, cond-mat/0108494.

[477]  M. Bartolozzi,et al.  Spin-glass behavior of the antiferromagnetic Ising model on a scale-free network , 2006 .

[478]  Shi Zhou,et al.  The rich-club phenomenon in the Internet topology , 2003, IEEE Communications Letters.

[479]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[480]  Stefan Bornholdt,et al.  Detecting fuzzy community structures in complex networks with a Potts model. , 2004, Physical review letters.

[481]  S. Redner,et al.  Voter model on heterogeneous graphs. , 2004, Physical review letters.

[482]  O. Kwon,et al.  Coherence resonance in small-world networks of excitable cells , 2002 .

[483]  R. Pastor-Satorras,et al.  Critical load and congestion instabilities in scale-free networks , 2003 .

[484]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[485]  Haijun Zhou Long Range Frustrations in a Spin Glass Model of the Vertex Cover Problem , 2005, Physical review letters.

[486]  Paul L. Krapivsky,et al.  Transition from small to large world in growing networks , 2007, ArXiv.

[487]  Soumen Roy,et al.  Is small-world network disordered? , 2004, cond-mat/0409012.

[488]  Romualdo Pastor-Satorras,et al.  Zero temperature Glauber dynamics on complex networks , 2006 .

[489]  H. Stanley,et al.  Optimal paths in complex networks with correlated weights: the worldwide airport network. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[490]  M. Mézard,et al.  Statistical mechanics of the hitting set problem. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[491]  Dynamic critical behavior of the XY model in small-world networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[492]  Reuven Cohen,et al.  Numerical evaluation of the upper critical dimension of percolation in scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[493]  Adilson E Motter,et al.  Cascade-based attacks on complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[494]  Sergey N. Dorogovtsev,et al.  Organization of complex networks without multiple connections , 2005, Physical review letters.

[495]  Alexei Vazquez,et al.  Polynomial growth in branching processes with diverging reproductive number. , 2006, Physical review letters.

[496]  T Rizzo,et al.  On Cavity Approximations for Graphical Models , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[497]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[498]  Alessandro Vespignani,et al.  Epidemics and immunization in scale‐free networks , 2002, cond-mat/0205260.

[499]  Hiroyasu Yamada Phase-Locked and Phase-Drift Solutions of Phase Oscillators with Asymmetric Coupling Strengths , 2002 .

[500]  Jae Woo Lee,et al.  Universality Class of Bak-Sneppen Model on Scale-Free Network , 2005 .

[501]  S. Havlin,et al.  Scaling theory of transport in complex biological networks , 2007, Proceedings of the National Academy of Sciences.

[502]  M B Hastings Systematic series expansions for processes on networks. , 2006, Physical review letters.

[503]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[504]  S. N. Dorogovtsev,et al.  Scaling properties of scale-free evolving networks: continuous approach. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[505]  M. Newman,et al.  Solution of the two-star model of a network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[506]  Sergey N. Dorogovtsev,et al.  Ising Model on Networks with an Arbitrary Distribution of Connections , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[507]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2004, Physical review letters.

[508]  A. Brooks Harris Exact Solution of a Model of Localization , 1982 .

[509]  F. Radicchi,et al.  Entrainment of coupled oscillators on regular networks by pacemakers. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[510]  Hilbert J. Kappen,et al.  On the properties of the Bethe approximation and loopy belief propagation on binary networks , 2004 .

[511]  H. Thomas,et al.  Phase transition of the Cayley tree with Ising interaction , 1974 .

[512]  D.,et al.  Branching Process Approach to Avalanche Dynamics on Complex Networks , 2003 .

[513]  Sergey N. Dorogovtsev,et al.  K-core Organization of Complex Networks , 2005, Physical review letters.

[514]  F. Iglói,et al.  First- and second-order phase transitions in scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[515]  Alessandro Vespignani,et al.  K-core Decomposition: a Tool for the Visualization of Large Scale Networks , 2005, ArXiv.

[516]  Y. Moreno,et al.  Resilience to damage of graphs with degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[517]  Claudio Castellano Effect of network topology on the ordering dynamics of voter models , 2005 .

[518]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[519]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[520]  Marián Boguñá,et al.  Clustering in complex networks. II. Percolation properties. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.