Construction of Barnes-Wall lattices from linear codes over rings

Dense lattice packings can be obtained via the well-known Construction A from binary linear codes. In this paper, we use an extension of Construction A called Construction A' to obtain Barnes-Wall lattices from linear codes over polynomials rings. To obtain the Barnes-Wall lattice BW<sub>2m</sub> in C<sup>2m</sup> for any m ≥ 1, we first identify a linear code C<sub>2m</sub> over the quotient ring U<sub>m</sub> = F<sub>2</sub>[u]/u<sup>m</sup> and then propose a mapping ψ : U<sub>m</sub> → Z[i] such that the code L<sub>2m</sub> = ψ (C<sub>2m</sub>) is a lattice constellation. Further, we show that L<sub>2m</sub> has the cubic shaping property when m is even. Finally, we show that BW<sub>2m</sub> can be obtained through Construction A' as BW<sub>2m</sub> = (1 + i)<sup>m</sup> Z[i]<sup>2m</sup> ⊕ L<sub>2m</sub>.

[1]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[2]  E. M. Rains,et al.  A Simple Construction for the Barnes-Wall Lattices , 2002, math/0207186.

[3]  Alexander Vardy,et al.  Generalized minimum-distance decoding of Euclidean-space codes and lattices , 1996, IEEE Trans. Inf. Theory.

[4]  Emanuele Viterbo,et al.  Practical Encoders and Decoders for Euclidean Codes from Barnes-Wall Lattices , 2012, IEEE Transactions on Communications.

[5]  Daniele Micciancio,et al.  Efficient bounded distance decoders for Barnes-Wall lattices , 2008, 2008 IEEE International Symposium on Information Theory.

[6]  Ofer Amrani,et al.  Augmented product codes and lattices: Reed-Muller codes and Barnes-Wall lattices , 2005, IEEE Transactions on Information Theory.

[7]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[8]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[9]  R. Blahut Theory and practice of error control codes , 1983 .