Synthesis, Structure, and Magnetic Properties of 1D {[MnIII(CN)6][MnII(dapsc)]}n Coordination Polymers: Origin of Unconventional Single-Chain Magnet Behavior.

Two one-dimensional cyano-bridged coordination polymers, namely, {[MnII(dapsc)][MnIII(CN)6][K(H2O)2.75(MeOH)0.5]}n·0.5n(H2O) (I) and {[MnII(dapsc)][MnIII(CN)6][K(H2O)2(MeOH)2]}n (II), based on alternating high-spin MnII(dapsc) (dapsc = 2,6-diacetylpyridine bis(semicarbazone)) complexes and low-spin orbitally degenerate hexacyanomanganate(III) complexes were synthesized and characterized structurally and magnetically. Static and dynamic magnetic measurements reveal a single-chain magnet (SCM) behavior of I with an energy barrier of Ueff ≈ 40 K. Magnetic properties of I are analyzed in detail in terms of a microscopic theory. It is shown that compound I refers to a peculiar case of SCM that does not fall into the usual Ising and Heisenberg limits due to unconventional character of the MnIII-CN-MnII spin coupling resulting from a nonmagnetic singlet ground state of orbitally degenerate complexes [MnIII(CN)6]3-. The prospects of [MnIII(CN)6]3- complex as magnetically anisotropic molecular building block for engineering molecular magnets are critically analyzed.

[1]  N. Guihéry,et al.  Pentagonal Bipyramid FeII Complexes: Robust Ising-Spin Units towards Heteropolynuclear Nanomagnets. , 2017, Chemistry.

[2]  D. Liao,et al.  Slow magnetic relaxation based on the anisotropic Ising-type magnetic coupling between the MoIII and MnII centers. , 2017, Dalton transactions.

[3]  Song Gao,et al.  Two-Coordinate Co(II) Imido Complexes as Outstanding Single-Molecule Magnets. , 2017, Journal of the American Chemical Society.

[4]  Yan‐Zhen Zheng,et al.  On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. , 2016, Angewandte Chemie.

[5]  Song Gao,et al.  Understanding the Magnetic Anisotropy toward Single-Ion Magnets. , 2016, Accounts of chemical research.

[6]  Xin-Yi Wang,et al.  Probing the Effect of Axial Ligands on Easy-Plane Anisotropy of Pentagonal-Bipyramidal Cobalt(II) Single-Ion Magnets. , 2016, Inorganic chemistry.

[7]  Xin-Yi Wang,et al.  A One-Dimensional Magnet Based on [Mo(III)(CN)7](4.). , 2016, Inorganic chemistry.

[8]  W. Wernsdorfer,et al.  A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. , 2016, Journal of the American Chemical Society.

[9]  Kevin J. Gagnon,et al.  Self-Assembly of Organocyanide Dianions and Metal–Organic Macrocycles into Polymeric Architectures Including an Unprecedented Quadruple Helical Aperiodic Structure , 2016 .

[10]  Jiang Liu,et al.  Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. , 2016, Journal of the American Chemical Society.

[11]  J. Sutter,et al.  Magnetic anisotropy in two- to eight-coordinated transition–metal complexes: Recent developments in molecular magnetism , 2016 .

[12]  M. Murugesu,et al.  The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? , 2015, Chemical science.

[13]  V. Mironov Origin of Dissimilar Single-Molecule Magnet Behavior of Three MnII(2)MoIII Complexes Based on [MoIII(CN)7]4- Heptacyanomolybdate: Interplay of MoIII-CN-MnII Anisotropic Exchange Interactions. , 2015, Inorganic chemistry.

[14]  M. Vaz,et al.  A single-chain magnet with a very high blocking temperature and a strong coercive field. , 2015, Inorganic chemistry.

[15]  Xin-Yi Wang,et al.  Syntheses, structures, and magnetic properties of three new cyano-bridged complexes based on the [Mn(CN)₆](³⁻) building block. , 2015, Dalton transactions.

[16]  M. Pilkington,et al.  Coordination complexes of 15-membered pentadentate aza, oxoaza and thiaaza Schiff base macrocycles “Old Complexes Offer New Attractions” , 2015 .

[17]  Liang Zhao,et al.  Two octacyanometallate based WVNiII and MoVNiII chains with dominant ferromagnetic interactions , 2015 .

[18]  E. Yagubskii,et al.  The first photochromic bimetallic assemblies based on Mn(III) and Mn(II) Schiff-base (salpn, dapsc) complexes and pentacyanonitrosylferrate , 2015 .

[19]  Yuan-Zhu Zhang,et al.  A Single-Chain Magnet Tape Based on Hexacyanomanganate(III). , 2015, Angewandte Chemie.

[20]  J. Long,et al.  Radical ligand-containing single-molecule magnets , 2015 .

[21]  M. Murrie,et al.  3d single-ion magnets. , 2015, Chemical Society reviews.

[22]  Xin-Yi Wang,et al.  Spin canting, metamagnetism, and single-chain magnetic behaviour in a cyano-bridged homospin iron(II) compound. , 2015, Chemical communications.

[23]  C. Duhayon,et al.  Single-ion magnet behaviour of heptacoordinated Fe(II) complexes: on the importance of supramolecular organization. , 2015, Chemical communications.

[24]  Xin-Yi Wang,et al.  Field-induced slow magnetic relaxation in cobalt(II) compounds with pentagonal bipyramid geometry. , 2014, Inorganic chemistry.

[25]  A. Powell,et al.  A heterometallic Fe(II)-Dy(III) single-molecule magnet with a record anisotropy barrier. , 2014, Angewandte Chemie.

[26]  R. Clérac,et al.  A single-chain magnet based on linear [Mn(III)2Mn(II)] units. , 2014, Chemical communications.

[27]  D. Samsonenko,et al.  [Mn(III)(Schiff base)]₃[Re(IV)(CN)₇], highly anisotropic 3D coordination framework: synthesis, crystal structure, magnetic investigations, and theoretical analysis. , 2014, Inorganic chemistry.

[28]  K. Dunbar,et al.  Ligands effects on the magnetic anisotropy of tetrahedral cobalt complexes. , 2014, Chemical communications.

[29]  W. Wernsdorfer,et al.  Magnetic relaxation of 1D coordination polymers (X)₂[Mn(acacen)Fe(CN)₆], X = Ph₄P⁺, Et₄N⁺. , 2014, Inorganic chemistry.

[30]  W. Wernsdorfer,et al.  Ising-type magnetic anisotropy and single molecule magnet behaviour in mononuclear trigonal bipyramidal Co(II) complexes , 2014 .

[31]  R. Clérac,et al.  New bidimensional honeycomb CoII-FeIII and brick wall FeII-CoIII cyanido-bridged coordination polymers: Synthesis, crystal structures and magnetic properties , 2014 .

[32]  M. Rams,et al.  A single chain magnet involving hexacyanoosmate. , 2014, Chemical communications.

[33]  E. Brechin,et al.  Metamagnetic behaviour in a new Cu(II)Re(IV) chain based on the hexachlororhenate(IV) anion. , 2014, Chemical communications.

[34]  J. Schlueter,et al.  A cobalt pyrenylnitronylnitroxide single-chain magnet with high coercivity and record blocking temperature. , 2014, Chemistry.

[35]  A. Barra,et al.  [ReF(6)](2-) : a robust module for the design of molecule-based magnetic materials. , 2014, Angewandte Chemie.

[36]  F. Tuna,et al.  A Uranium-Based UO2+–Mn2+ Single-Chain Magnet Assembled trough Cation–Cation Interactions** , 2013, Angewandte Chemie.

[37]  M. Yamashita,et al.  Syntheses, structures, and magnetic properties of discrete cyano-bridged heterodinuclear complexes composed of MnIII(salen)-type complex and MIII(CN)6 anion (MIII = Fe, Mn, and Cr) , 2013 .

[38]  Frank Neese,et al.  Mössbauer spectroscopy as a probe of magnetization dynamics in the linear iron(I) and iron(II) complexes [Fe(C(SiMe3)3)2](1-/0.). , 2013, Inorganic chemistry.

[39]  G. Britovsek,et al.  Coordination equilibria between seven- and five-coordinate iron(II) complexes. , 2013, Inorganic chemistry.

[40]  Yang-guang Li,et al.  Rational design of a photomagnetic chain: bridging single-molecule magnets with a spin-crossover complex. , 2013, Journal of the American Chemical Society.

[41]  F. Lloret,et al.  Highly anisotropic rhenium(IV) complexes: new examples of mononuclear single-molecule magnets. , 2013, Journal of the American Chemical Society.

[42]  X. You,et al.  A single-molecule magnet based on heptacyanomolybdate with the highest energy barrier for a cyanide compound. , 2013, Journal of the American Chemical Society.

[43]  Liviu F Chibotaru,et al.  Magnetic relaxation pathways in lanthanide single-molecule magnets. , 2013, Nature chemistry.

[44]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[45]  E. Cremades,et al.  Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. , 2013, Journal of the American Chemical Society.

[46]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[47]  A. Schnegg,et al.  Three-axis anisotropic exchange coupling in the single-molecule magnets NEt4[Mn(III)2(5-Brsalen)2(MeOH)2M(III)(CN)6] (M=Ru, Os). , 2013, Chemistry.

[48]  M. Yamashita,et al.  Single-chain magnets: beyond the Glauber model , 2013 .

[49]  M. Kiskin,et al.  Novel polynuclear architectures incorporating Co2+ and K+ ions bound by dimethylmalonate anions: Synthesis, structure, and magnetic properties , 2013 .

[50]  C. Duhayon,et al.  Heptacoordinated nickel(II) as an Ising-type anisotropic building unit: illustration with a pentanuclear [(NiL)3{W(CN)8}2] complex. , 2013, Inorganic chemistry.

[51]  N. Guihéry,et al.  Giant Ising-type magnetic anisotropy in trigonal bipyramidal Ni(II) complexes: experiment and theory. , 2013, Journal of the American Chemical Society.

[52]  E. Coronado,et al.  Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic Tb(III) bis(phthalocyaninate). , 2013, Chemistry.

[53]  C. de Graaf,et al.  Origin of the magnetic anisotropy in heptacoordinate Ni(II) and Co(II) complexes. , 2013, Chemistry.

[54]  R. Caciuffo,et al.  Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier. , 2012, Nature chemistry.

[55]  L. Chibotaru,et al.  Hysteresis in the ground and excited spin state up to 10 T of a [MnIII6MnIII]3+ triplesalen single-molecule magnet , 2012 .

[56]  M. Yamashita,et al.  Cyano-bridged Mn(III)-M(III) single-chain magnets with M(III)=Co(III), Fe(III), Mn(III), and Cr(III). , 2012, Chemistry.

[57]  Fernando Luis,et al.  Design of magnetic coordination complexes for quantum computing. , 2012, Chemical Society reviews.

[58]  F. Tuna,et al.  Pentanuclear cyanide-bridged complexes based on highly anisotropic Co(II) seven-coordinate building blocks: synthesis, structure, and magnetic behavior. , 2011, Inorganic chemistry.

[59]  J. Long,et al.  Exploiting single-ion anisotropy in the design of f-element single-molecule magnets , 2011 .

[60]  J. Long,et al.  A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. , 2011, Journal of the American Chemical Society.

[61]  J. Long,et al.  Influence of structure on exchange strength and relaxation barrier in a series of FeIIReIV(CN)2 single-chain magnets , 2011 .

[62]  L. Sorace,et al.  Lanthanides in molecular magnetism: old tools in a new field. , 2011, Chemical Society reviews.

[63]  K. Dunbar,et al.  Molecular magnetic materials based on 4d and 5d transition metals. , 2011, Chemical Society reviews.

[64]  Song Gao,et al.  First Fe(II)-based cyano-bridged single molecule magnet [Cr(III)Fe(II)(2)] with a large anisotropy. , 2010, Chemical communications.

[65]  K. Dunbar,et al.  A docosanuclear {Mo8Mn14} cluster based on [Mo(CN)7]4-. , 2010, Angewandte Chemie.

[66]  Song Gao,et al.  Strategies towards single-chain magnets , 2010 .

[67]  C. Duhayon,et al.  Enhanced ion anisotropy by nonconventional coordination geometry: single-chain magnet behavior for a [{Fe(II)L}2{Nb(IV)(CN)8}] helical chain compound designed with heptacoordinate Fe(II). , 2010, Journal of the American Chemical Society.

[68]  J. Long,et al.  [ReCl4(CN)2]2-: a high magnetic anisotropy building unit giving rise to the single-chain magnets (DMF)4MReCl4(CN)2 (M = Mn, Fe, Co, Ni). , 2010, Journal of the American Chemical Society.

[69]  O. Sato,et al.  A cyano-bridged Cr(III)Co(II) ferromagnet with a chiral nanotubular structure constituted of interlocked single and double helices. , 2010, Inorganic chemistry.

[70]  A. Powell,et al.  Strategies towards single molecule magnets based on lanthanide ions , 2009 .

[71]  M. Yamashita,et al.  Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets. , 2009, Inorganic chemistry.

[72]  Xiao‐Ming Chen,et al.  Probing single-chain magnets in a family of linear chain compounds constructed by magnetically anisotropic metal-ions and cyclohexane-1,2-dicarboxylate analogues. , 2008, Inorganic Chemistry.

[73]  Joan Cano,et al.  Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application , 2008 .

[74]  S. Kitagawa,et al.  Interpenetrated three-dimensional MnIIMIII ferrimagnets, [Mn(4dmap)4]3[M(CN)6]2.10 H2O (M=Cr, Mn): structures, magnetic properties, and pressure-responsive magnetic modulation. , 2008, Chemistry.

[75]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[76]  A. Barra,et al.  Large magnetic anisotropy in pentacoordinate Ni(II) complexes. , 2008, Chemistry.

[77]  A. Vindigni,et al.  The canted antiferromagnetic approach to single-chain magnets. , 2008, Journal of the American Chemical Society.

[78]  O. Waldmann A criterion for the anisotropy barrier in single-molecule magnets. , 2007, Inorganic chemistry.

[79]  Song Gao,et al.  Stringing oxo-centered trinuclear [MnIII3O] units into single-chain magnets with formate or azide linkers. , 2007, Angewandte Chemie.

[80]  P. Comba,et al.  DFT-based studies on the Jahn-Teller effect in 3d hexacyanometalates with orbitally degenerate ground states. , 2007, The journal of physical chemistry. A.

[81]  J. Stride,et al.  Neutron diffraction and theoretical DFT studies of two dimensional molecular-based magnet K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O. , 2007, Inorganic chemistry.

[82]  S. Kitagawa,et al.  Chiral cyanide-bridged Mn(II)Mn(III) ferrimagnets, [Mn(II)(HL)(H2O)][Mn(III)(CN)6].2H2O (L = S- or R-1,2-diaminopropane): syntheses, structures, and magnetic behaviors. , 2007, Journal of the American Chemical Society.

[83]  A. Caneschi,et al.  A family of rare-earth-based single chain magnets: playing with anisotropy. , 2006, Journal of the American Chemical Society.

[84]  H. Sakiyama Magnetic susceptibility equation for dinuclear high-spin cobalt(II) complexes considering the exchange interaction between two axially distorted octahedral cobalt(II) ions , 2006 .

[85]  K. Dunbar,et al.  Highly anisotropic orbitally dependent superexchange in cyano-bridged clusters containing Mn(III) and Mn(II) ions. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[86]  T. Yokoyama,et al.  Novel structural and magnetic properties of a 1-D iron(II)-manganese(II) LIESST compound bridged by cyanide. , 2005, Inorganic chemistry.

[87]  K. Dunbar,et al.  Control of the Barrier in Cyanide Based Single Molecule Magnets Mn(III)2Mn(II)3:  Theoretical Analysis. , 2005, Journal of chemical theory and computation.

[88]  C. Berlinguette,et al.  Role of the orbitally degenerate Mn(III) ions in the single-molecule magnet behavior of the cyanide cluster ([MnII(tmphen)2]3[Mn(III)(CN)6]2) (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline). , 2004, Journal of the American Chemical Society.

[89]  V. Mironov Spin Clusters with Orbitally Degenerate Magnetic Centers As Single-Molecule Nanomagnets with High Blocking Temperatures , 2004 .

[90]  E. McInnes,et al.  Tetracyanoquinodimethane derivatives of fully condensed schiff base ligands derived from 2,6-diacetylpyridine: crystal structure of a nickel(ii) chloride complex with 2,6-diacetylpyridinebis(semicarbazone) , 2004 .

[91]  R. Boča Zero-field splitting in metal complexes , 2004 .

[92]  A. Ceulemans,et al.  Mechanism of a strongly anisotropic MoIII-CN-MnII spin-spin coupling in molecular magnets based on the [Mo(CN)(7)](4-) heptacyanometalate: a new strategy for single-molecule magnets with high blocking temperatures. , 2003, Journal of the American Chemical Society.

[93]  C. Berlinguette,et al.  A trigonal-bipyramidal cyanide cluster with single-molecule-magnet behavior: synthesis, structure, and magnetic properties of ([MnII(tmphen)2]3[MnIII(CN)6]2). , 2003, Angewandte Chemie.

[94]  A. Ceulemans,et al.  Exchange interaction in the YbCrBr93- mixed dimer: The origin of a strong Yb3+-Cr3+ exchange anisotropy , 2003 .

[95]  H. Sakiyama,et al.  Synthesis, structure, and magnetic properties of dinuclear cobalt(II) complexes with a new phenol-based dinucleating ligand with four hydroxyethyl chelating arms. , 2002, Inorganic chemistry.

[96]  Jyoti,et al.  Tetracyanoquinodimethane Derivatives of Pentagonal Bipyramidal Complexes of Manganese(II), Iron(II), Nickel(II) and Copper(II) with 2,6-diacetylpyridinebis(semicarbazone)∶ Single Crystal Structure of dichloro[2,6-diacetylpyridinebis (semicarbazone)] Manganese(II)monohydrate , 2002 .

[97]  博史 崎山,et al.  軸対称二核高スピンコバルト(II)錯体の磁化率解析ソフト「名称: MagSaki」の開発 , 2001 .

[98]  K. Inoue,et al.  Dinuclear Cobalt(II) Complexes of an Acyclic Phenol‐Based Dinucleating Ligand with Four Methoxyethyl Chelating Arms − First Magnetic Analyses in an Axially Distorted Octahedral Field , 2001 .

[99]  A. Sobolev,et al.  Cs2K[Mn(CN)6] at 293, 85 and 10 K , 2000 .

[100]  P. Pelagatti,et al.  STRUCTURAL CHARACTERIZATION OF A NEW LIGAND MODE OF 2,6-DIACETYLPYRIDINE BIS(SEMICARBAZONE), H2DAPS , 1999 .

[101]  Joel S. Miller,et al.  Structure and physical properties of hexacyanomanganate(III), [MnIII(CN)6]3− , 1999 .

[102]  A. Bino,et al.  Three coordination modes of the pentadentate ligand 2,6-diacetylpyridinedisemicarbazone , 1987 .

[103]  G. Newkome,et al.  Multidentate ligands containing 2,2'-bipyridine and/or pyridine moieties: structural aspects of their octahedral and pentagonal-bipyramidal complexes , 1984 .

[104]  M. Gerloch,et al.  Magnetic and spectral properties of chloroaqua[2,6-diacetylpyridinebis(semicarbazone)]iron(II) and diaqua[2,6-diacetylpyridinebis(semicarbazone)]nickel(II): ligand fields and bonding in pentagonal-bipyramidal complexes , 1979 .

[105]  J. Audière,et al.  Magnetic and spectral properties of the pentagonal-bipyramidal complex ions chloroaqua- and diaqua[2,6-diacetylpyridinebis(semicarbazone)]cobalt(II) , 1979 .

[106]  T. Giordano,et al.  Pentagonal-bipyramidal complexes. Synthesis and characterization of aqua(nitrato)[2,6-diacetylpyridine bis(benzoyl hydrazone)]cobalt(II) nitrate and diaqua[2,6-diacetylpyridine bis(benzoyl hydrazone)]nickel(II) nitrate dihydrate , 1979 .

[107]  G. J. Palenik,et al.  Pentagonal-bipyramidal complexes. Crystal and molecular structures of chloroaqua(2,6-diacetylpyridine bis(semicarbazone))manganese(II), -iron(II), -cobalt(II), and -zinc(II) chloride dihydrates , 1978 .

[108]  G. J. Palenik,et al.  Pentagonal-bipyramidal complexes. Synthesis and crystal structures of diaqua[2,6-diacetylpyridine bis(semicarbazone)]chromium(III) hydroxide dinitrate hydrate and dichloro[2,6-diacetylpyridine bis(semicarbazone)]iron(III) chloride dihydrate , 1976 .

[109]  G. J. Palenik,et al.  Pentagonal bipyramidal complexes of nickel(II) and copper(II). Relative importance of ligand geometry vs. crystal field effects , 1974 .

[110]  G. J. Palenik,et al.  Synthesis and characterization of novel pentagonal bipyramidal complexes of iron(II), cobalt(II), and zinc(II) , 1973 .

[111]  M. E. Lines,et al.  Orbital Angular Momentum in the Theory of Paramagnetic Clusters , 1971 .

[112]  rgensen,et al.  Do the ``Ligand Field'' Parameters in Lanthanides Represent Weak Covalent Bonding? , 1963 .

[113]  R. Glauber Time‐Dependent Statistics of the Ising Model , 1963 .

[114]  L. Sorace,et al.  Magnetic Bistability in Lanthanide-Based Molecular Systems: The Role of Anisotropy and Exchange Interactions , 2016 .

[115]  Frank Neese,et al.  The ORCA program system , 2012 .

[116]  D. Pantazis,et al.  What is not required to make a single molecule magnet. , 2011, Faraday discussions.

[117]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[118]  I. Ivanović‐Burmazović,et al.  TRANSITION METAL COMPLEXES WITH BIS(HYDRAZONE) LIGANDS OF 2,6-DIACETYLPYRIDINE. HEPTA-COORDINATION OF 3d METALS , 2004 .

[119]  P. A. Reynolds,et al.  Single-crystal low-temperature magnetisation studies of Cs2K[Mn(CN)6] , 1994 .

[120]  K. Pierloot,et al.  Systematic ab-initio study of the ligand-field spectra of hexacyanometalate complexes , 1993 .

[121]  D. Ghosh,et al.  Magnetic studies on low-spin K3Mn(CN)6 , 1979 .

[122]  A. Shimizu,et al.  The OD-Structure of K3Mn(CN)6. , 1970 .

[123]  C. E. Schäffer A perturbation representation of weak covalent bonding , 1968 .