Combining agent-based and stock-flow modelling approaches in a participative analysis of the integrated land system in Reichraming, Austria

The integrated modelling of coupled socio-ecological systems in land-change science requires innovative model concepts capable of grasping the interrelations between socioeconomic and natural components. Here, we discuss the integrated socio-ecological model SERD (Simulation of Ecological Compatibility of Regional Development) that was developed for the municipality of Reichraming in Upper Austria in a participative 2-year process involving local stakeholders. SERD includes three main components: (1) an agent-based actors module that simulates decisions of farmsteads, the municipal administration and other important actors; (2) a spatially explicit (GIS based) land-use module that simulates land-use change at the level of individual parcels of land and (3) an integrated socio-ecological stock-flow module that simulates carbon and nitrogen flows through both socioeconomic and ecological system compartments. We report on outcomes of a scenario analysis that outlines possible future trajectories depending on both external (e.g. agricultural subsidies and prices) and internal (e.g. innovation, willingness to co-operate) factors. We find that both external and internal factors can affect the behaviour of the integrated system considerably. Local and regional policies are found to be able to counteract adverse global socioeconomic conditions to some extent, but not to reverse the trend altogether. We also find strong interdependencies between socioeconomic and ecological components of the system. Fully evaluating these interdependencies is, however, not possible at the local scale alone and will require explicit consideration of higher-level effects in future research.

[1]  Thomas Berger,et al.  Multi-agent simulation for the targeting of development policies in less-favored areas , 2006 .

[2]  Avram Hershko,et al.  Past, Present, and Future Perspectives , 1998 .

[3]  Hubert Hasenauer,et al.  Evaluating the self‐initialization procedure for large‐scale ecosystem models , 2006 .

[4]  P. Ciais,et al.  Old-growth forests as global carbon sinks , 2008, Nature.

[5]  Felix Müller,et al.  Long-Term Ecological Research , 2010 .

[6]  K. Brand,et al.  Nachhaltige Entwicklung und Transdisziplinarität , 2000 .

[7]  G. Rowe,et al.  A Typology of Public Engagement Mechanisms , 2005 .

[8]  E. Lambin,et al.  The emergence of land change science for global environmental change and sustainability , 2007, Proceedings of the National Academy of Sciences.

[9]  William J. McConnell,et al.  Global Land Project , 2005 .

[10]  William R. Freudenburg,et al.  From LTER to LTSER: Conceptualizing the Socioeconomic Dimension of Long-term Socioecological Research , 2006 .

[11]  Richard Petritsch,et al.  Incorporating forest growth response to thinning within biome-BGC , 2007 .

[12]  Per Ambus,et al.  Inventories of N2O and NO Emissions from European Forest Soils , 2005 .

[13]  Jo Dewulf,et al.  Renewables-based technology : sustainability assessment , 2006 .

[14]  C. Turley Intergovernmental Panel on Climate Change (IPCC) , 2010 .

[15]  R. Rees,et al.  Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites , 2007 .

[16]  A. Gac,et al.  A French inventory of gaseous emissions (CH4, N2O, NH3) from livestock manure management using a mass-flow approach , 2007 .

[17]  François Bousquet,et al.  Using Self-Designed Role-Playing Games and a Multi-Agent System to Empower a Local Decision-Making Process for Land Use Management: The SelfCormas Experiment in Senegal , 2003, J. Artif. Soc. Soc. Simul..

[18]  J. Olesen,et al.  Mitigation of greenhouse gas emissions in European conventional and organic dairy farming , 2006 .

[19]  Peter E. Thornton,et al.  BGC-model parameters for tree species growing in central European forests , 2005 .

[20]  K. Happe,et al.  Research, part of a Special Feature on Empirical based agent-based modeling Agent-based Analysis of Agricultural Policies: an Illustration of the Agricultural Policy Simulator AgriPoliS, its Adaptation and Behavior , 2006 .

[21]  W. Steffen,et al.  Science Plan and Implementation Strategy , 2006 .

[22]  Michael Mirtl,et al.  Conceptualising Long-Term Socio-ecological Research (LTSER): Integrating the Social Dimension , 2010 .

[23]  Corinna Rebmann,et al.  Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink –‐ a synthesis , 1999 .

[24]  Tom Evans,et al.  Agent-based modeling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States , 2007, Proceedings of the National Academy of Sciences.

[25]  Alexei G. Sankovski,et al.  Special report on emissions scenarios : a special report of Working group III of the Intergovernmental Panel on Climate Change , 2000 .

[26]  Sarah Davis,et al.  Complexity, land-use modeling, and the human dimension: Fundamental challenges for mapping unknown outcome spaces , 2008 .

[27]  Millenium Ecosystem Assessment Ecosystems and human well-being: synthesis , 2005 .

[28]  William J. McConnell,et al.  Global Land Project: Science Plan and ImplementationStrategy , 2005 .

[29]  Helmut Haberl,et al.  Land-use change and socio-economic metabolism in Austria—Part II: land-use scenarios for 2020 , 2003 .

[30]  Claudia Pahl-Wostl,et al.  Participative and Stakeholder-Based Policy Design, Evaluation and Modeling Processes , 2002 .

[31]  P. Burschel,et al.  Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt - Eine Betrachtung für die Bundesrepublik Deutschland , 1993 .

[32]  T. Jahn,et al.  Soziale Ökologie, kognitive Integration und Transdisziplinarität , 2005 .

[33]  M. Hare,et al.  Stakeholder Categorisation in Participatory Integrated Assessment Processes , 2002 .

[34]  Arnold K. Bregt,et al.  A method to define a typology for agent-based analysis in regional land-use research , 2008 .

[35]  Helmut Haberl,et al.  Assessment of Sustainable Land Use in Producing Biomass , 2006 .

[36]  Michael Mirtl,et al.  Conceptualising Long-term Socio-ecological Research ( LTSER ) : Integrating socio-economic dimensions into long-term ecological research , 2007 .

[37]  Jens Newig,et al.  The Role of Formalisation, Participation and Context in the Success of Public Involvement Mechanisms in Resource Management , 2008 .

[38]  A. Balmann Farm-Based Modelling of Regional Structural Change: A Cellular Automata Approach , 1997 .

[39]  Kathleen P. Bell,et al.  Spatially explicit micro-level modelling of land use change at the rural–urban interface , 2002 .

[40]  R. Kasperson,et al.  Sustainability Science , 2019, Critical Skills for Environmental Professionals.

[41]  Barbara Cornelia Elisabeth Leick Emission von Ammoniak (NH3) und Lachgas (N2O) von landwirtschaftlich genutzten Böden in Abhängigkeit von produktionstechnischen Maßnahmen , 2004 .

[42]  M. Janssen,et al.  Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review , 2003 .

[43]  J. Bongaarts,et al.  Global Environment Outlook , 1998 .