Automata on Gauss Words

In this paper we investigate the computational complexity of knot theoretic problems and show upper and lower bounds for planarity problem of signed and unsigned knot diagrams represented by Gauss words. Due to the fact the number of crossing in knots is unbounded, the Gauss words of knot diagrams are strings over infinite (unbounded) alphabet. For establishing the lower and upper bounds on recognition of knot properties we study these problems in a context of automata models over infinite alphabet.

[1]  Louis H. Kauffman Virtual Knot Theory , 1999, Eur. J. Comb..

[2]  Thomas Schwentick,et al.  Finite state machines for strings over infinite alphabets , 2004, TOCL.

[3]  Thomas Schwentick,et al.  On Notions of Regularity for Data Languages , 2007, FCT.

[4]  Rusins Freivalds,et al.  Knot Theory, Jones Polynomial and Quantum Computing , 2005, MFCS.

[5]  Temperley-Lieb Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics , 2007 .

[6]  Michel Rigo,et al.  Abstract numeration systems and tilings , 2005 .

[7]  Louis H. Kauffman,et al.  Topological quantum computing and the Jones polynomial , 2006, SPIE Defense + Commercial Sensing.

[8]  J. Carter,et al.  Classifying immersed curves , 1991 .

[9]  Samson Abramsky,et al.  Temperley−Lieb algebra: From knot theory to logic and computation via quantum mechanics , 2009, 0910.2737.

[10]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.

[11]  Dan Suciu,et al.  Typechecking for XML transformers , 2000, J. Comput. Syst. Sci..

[12]  Nissim Francez,et al.  Finite-Memory Automata , 1994, Theor. Comput. Sci..

[13]  Stéphane Demri,et al.  LTL with the Freeze Quantifier and Register Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[14]  Valtteri Niemi,et al.  Morphic Images of Gauss Codes , 1993, Developments in Language Theory.

[15]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[16]  V. Kurlin Gauss phrases realizable by classical links , 2006 .

[17]  Grant Cairns,et al.  THE PLANARITY PROBLEM FOR SIGNED GAUSS WORDS , 1993 .

[18]  Grant Cairns,et al.  THE PLANARITY PROBLEM II , 1996 .

[19]  Louis H. Kauffman,et al.  Mathematics of Quantum Computation and Quantum Technology , 2007 .