Belief function and multivalued mapping robustness in statistical estimation

We consider the case in which the available knowledge does not allow to specify a precise probabilistic model for the prior and/or likelihood in statistical estimation. We assume that this imprecision can be represented by belief functions models. Thus, we exploit the mathematical structure of belief functions and their equivalent representation in terms of closed convex sets of probabilities to derive robust posterior inferences using Walley@?s theory of imprecise probabilities. Then, we apply these robust models to practical inference problems and we show the connections of the proposed inference method with interval estimation and statistical inference with missing data.

[1]  Gert de Cooman,et al.  Updating beliefs with incomplete observations , 2003, Artif. Intell..

[2]  I. Molchanov Theory of Random Sets , 2005 .

[3]  Gert de Cooman,et al.  Extension of coherent lower previsions to unbounded random variables , 2002 .

[4]  P. Walley,et al.  Robust Bayesian credible intervals and prior ignorance , 1991 .

[5]  James O. Berger,et al.  An overview of robust Bayesian analysis , 1994 .

[6]  Marco Zaffalon,et al.  Limits of Learning about a Categorical Latent Variable under Prior Near-Ignorance , 2007, Int. J. Approx. Reason..

[7]  Serafín Moral,et al.  Imprecise probabilities for representing ignorance about a parameter , 2012, Int. J. Approx. Reason..

[8]  Michael Scott Balch,et al.  Mathematical foundations for a theory of confidence structures , 2012, Int. J. Approx. Reason..

[9]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[10]  P. Walley,et al.  A survey of concepts of independence for imprecise probabilities , 2000 .

[11]  Arthur P. Dempster,et al.  The Dempster-Shafer calculus for statisticians , 2008, Int. J. Approx. Reason..

[12]  Peter Walley A Bounded Derivative Model for Prior Ignorance about a Real-valued Parameter , 1997 .

[13]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[14]  P. Walley,et al.  Upper probabilities based only on the likelihood function , 1999 .

[15]  Marco Zaffalon,et al.  A Model of Prior Ignorance for Inferences in the One-parameter Exponential Family , 2012 .

[16]  J. Berger,et al.  Ranges of posterior measures for priors with unimodal contaminations , 1989 .

[17]  James O. Berger Statistical Decision Theory , 1980 .

[18]  Serafín Moral,et al.  Calculating Uncertainty Intervals from Conditional Convex Sets of Probabilities , 1992, UAI.

[19]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[20]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[21]  Joseph K. Blitzstein,et al.  Conditional probability , 2018, Fat Chance.

[22]  Glenn Shafer,et al.  Allocations of Probability , 1979, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[23]  Robert Hable A minimum distance estimator in an imprecise probability model - Computational aspects and applications , 2010, Int. J. Approx. Reason..

[24]  Chuanhai Liu,et al.  Inference about constrained parameters using the elastic belief method , 2012, Int. J. Approx. Reason..

[25]  Marco Zaffalon,et al.  Conservative Inference Rule for Uncertain Reasoning under Incompleteness , 2009, J. Artif. Intell. Res..

[26]  Inés Couso,et al.  Study of the Probabilistic Information of a Random Set , 2003, ISIPTA.

[27]  L. Wasserman Belief functions and statistical inference , 1990 .

[28]  J. Hartigan,et al.  Bayesian Inference Using Intervals of Measures , 1981 .

[29]  Larry Wasserman,et al.  Invariance Properties of Density Ratio Priors , 1992 .

[30]  Larry Wasserman,et al.  Prior Envelopes Based on Belief Functions , 1990 .

[31]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .