Holonomy and entropy estimates for dynamically triangulated manifolds

We provide an elementary proof of the exponential bound to the number of distinct dynamical triangulations of an n‐dimensional manifold M (n≥2), of given volume and fixed topology. The resulting entropy estimates emphasize the basic role, in simplicial quantum gravity, of the moduli spaces Hom(π1(M),G)/G associated with the representations of the fundamental group of the manifold, π1(M), into a Lie group G.

[1]  Controlled topology in geometry , 1989 .

[2]  K. Walker An Extension of Casson's Invariant. , 1992 .

[3]  Peter Petersen,et al.  Bounding homotopy types by geometry , 1988 .

[4]  On the exponential bound in four dimensional simplical gravity , 1994, hep-lat/9405010.

[5]  N. Hitchin LIE-GROUPS AND TEICHMULLER SPACE , 1992 .

[6]  F Tricerri Advances in differential geometry and topology , 1990 .

[7]  J. Fröhlich Non-perturbative quantum field theory : mathematical aspects and applications : selected papers of Jürg Fröhlich , 1992 .

[8]  J. Fröhlich,et al.  Critical behaviour in a model of planar random surfaces , 1984 .

[9]  Edwin E. Moise,et al.  Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .

[10]  T. Regge General relativity without coordinates , 1961 .

[11]  J. Weitsman,et al.  Half density quantization of the moduli space of flat connections and witten's semiclassical manifold invariants , 1993 .

[12]  D. Weingarten Euclidean quantum gravity on a lattice , 1982 .

[13]  Jean Zinn-Justin,et al.  Fluctuating geometries in statistical mechanics and field theory , 1996 .

[14]  Jürg Fröhlich,et al.  Diseases of triangulated random surface models, and possible cures , 1985 .

[15]  G. Parisi,et al.  Statistical Field Theory , 1988 .

[16]  H. Romer,et al.  Functional integration and the diffeomorphism group in Euclidean lattice quantum gravity , 1986 .

[17]  Mauro Carfora,et al.  Entropy estimates for Simplicial Quantum Gravity , 1995 .

[18]  F. David PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS , 1985 .

[19]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[20]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[21]  P. Petersen,et al.  Geometric finiteness theorems via controlled topology , 1990 .

[22]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[23]  Simplicial quantum gravity in three dimensions: Analytical and numerical results. , 1993, Physical review. D, Particles and fields.

[24]  Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.

[25]  Alan D. Sokal,et al.  Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory , 1992 .

[26]  Ruth M. Williams,et al.  Regge calculus: a brief review and bibliography , 1992 .

[27]  Two-dimensional gauge theories revisited , 1992, hep-th/9204083.

[28]  K. Grove,et al.  Erratum to Geometric finiteness theorems via controlled topology , 1991 .

[29]  Karen K. Uhlenbeck,et al.  Instantons and Four-Manifolds , 1984 .

[30]  V. Kazakov The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity , 1989 .

[31]  Entropy of random coverings and 4D quantum gravity , 1994, hep-th/9412097.

[32]  D. Bessis A new method in the combinatorics of the topological expansion , 1979 .

[33]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[34]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .