Ultra-Long-Life and Ultrathin Quasi-Solid Electrolytes Fabricated by Solvent-Free Technology for Safe Lithium Metal Batteries

[1]  Xiaokun Zhang,et al.  Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries , 2022, Nano Research.

[2]  Wengao Zhao,et al.  A Polymerized‐Ionic‐Liquid‐Based Polymer Electrolyte with High Oxidative Stability for 4 and 5 V Class Solid‐State Lithium Metal Batteries , 2022, Advanced Energy Materials.

[3]  Qianyi Ma,et al.  The Plasticizer-Free Composite Block Copolymer Electrolytes for Ultralong Lifespan All-Solid-State Lithium-Metal Batteries , 2022, SSRN Electronic Journal.

[4]  Xin-Bing Cheng,et al.  Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries , 2022, Journal of Energy Chemistry.

[5]  Chen‐Zi Zhao,et al.  Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries , 2022, Journal of Energy Chemistry.

[6]  S. Lanceros‐Méndez,et al.  Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries , 2022, ACS Omega.

[7]  M. Xiao,et al.  Highly conductive self-healing polymer electrolytes based on synergetic dynamic bonds for highly safe lithium metal batteries , 2022, Chemical Engineering Journal.

[8]  Y. Ye,et al.  Scalable, Ultrathin, and High‐Temperature‐Resistant Solid Polymer Electrolytes for Energy‐Dense Lithium Metal Batteries , 2022, Advanced Energy Materials.

[9]  Chao Luo,et al.  Integrated Design of Ultrathin Crosslinked Network Polymer Electrolytes for Flexible and Stable All-Solid-State Lithium Batteries , 2022, Energy Storage Materials.

[10]  Qianyi Ma,et al.  Heterogeneous Nanodomain Electrolytes for Ultra‐Long‐Life All‐Solid‐State Lithium‐Metal Batteries , 2022 .

[11]  M. Xiao,et al.  Addressing interface elimination: Boosting comprehensive performance of all-solid-state Li-S battery , 2021 .

[12]  R. Hagiwara,et al.  Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries , 2021, Energy & Environmental Science.

[13]  M. Xiao,et al.  Interphase Building of Organic-Inorganic Hybrid Polymer Solid Electrolyte with Uniform Intermolecular Li+ Path for Stable Lithium Metal Batteries. , 2021, Small.

[14]  Peng Liu,et al.  Covalent Organic Frameworks with Low Surface Work Function Enabled Stable Lithium Anode. , 2021, Small.

[15]  Dingcai Wu,et al.  Ultrathin Yet Robust Single Lithium‐Ion Conducting Quasi‐Solid‐State Polymer‐Brush Electrolytes Enable Ultralong‐Life and Dendrite‐Free Lithium‐Metal Batteries , 2021, Advanced materials.

[16]  Luhan Ye,et al.  A dynamic stability design strategy for lithium metal solid state batteries , 2021, Nature.

[17]  Hong‐Jie Peng,et al.  New insights into “dead lithium” during stripping in lithium metal batteries , 2021 .

[18]  Jihong Yu,et al.  A highly stable and flexible zeolite electrolyte solid-state Li–air battery , 2021, Nature.

[19]  F. Ciucci,et al.  Ultrathin and Non‐Flammable Dual‐Salt Polymer Electrolyte for High‐Energy‐Density Lithium‐Metal Battery , 2021, Advanced Functional Materials.

[20]  M. Winter,et al.  In situ polymerization process: an essential design tool for lithium polymer batteries , 2021 .

[21]  Zheng Liang,et al.  Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li‐Based Rechargeable Batteries , 2021, Advanced science.

[22]  M. Xiao,et al.  Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries , 2021, Journal of Materials Chemistry A.

[23]  Xiaofei Yang,et al.  Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries , 2020, Energy & Environmental Science.

[24]  Xiangming He,et al.  Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries , 2020 .

[25]  M. Xiao,et al.  Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application , 2020, Advanced Functional Materials.

[26]  M. Urban,et al.  Self-healing polymers , 2020, Nature Reviews Materials.

[27]  Zhen Zhou,et al.  Towards practical lithium-metal anodes. , 2020, Chemical Society reviews.

[28]  S. Choudhury,et al.  Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. , 2020, Chemical Society reviews.

[29]  Sang‐young Lee,et al.  Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries , 2020 .

[30]  V. Berbenni,et al.  Is It Possible to Obtain Solvent‐Free, Li+‐Conducting Solid Electrolytes Based on Pure PVdF? Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes” , 2020, Advanced materials.

[31]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[32]  Wei Lv,et al.  Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries , 2020, Advanced science.

[33]  Lixia Yuan,et al.  Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[34]  Zhong Jin,et al.  Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries , 2018, Nano Energy.

[35]  Jeremiah A. Johnson,et al.  Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes. , 2018, Journal of the American Chemical Society.

[36]  L. M. Rodriguez-Martinez,et al.  Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. , 2018, Journal of the American Chemical Society.

[37]  M. Kadir,et al.  A conceptual review on polymer electrolytes and ion transport models , 2018 .

[38]  Ya‐Xia Yin,et al.  Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. , 2018, Journal of the American Chemical Society.

[39]  M. Wagemaker,et al.  Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface , 2017, Nature Communications.

[40]  Hossam Haick,et al.  Advanced Materials for Use in Soft Self‐Healing Devices , 2017, Advanced materials.

[41]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[42]  M. Xiao,et al.  Polymer electrolytes for lithium polymer batteries , 2016 .

[43]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[44]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[45]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.