Functional Organization of Appetitive Learning and Memory in a Generalist Pollinator, the Honey Bee

Individual experience with environmental stimuli leaves multiple traces of neuronal plasticities in the nervous system. Receptors adapt to prolonged stimulation; neural circuits habituate to repeated stimuli and dishabituate or sensitize to arousing stimuli; and new functional connections are formed or existing ones abolished by associative and latent learning. What are the rules of neural plasticity and how do they relate to the biological constraints under which they have evolved? The neuroethological approach taken in the study of honey bee learning and memory tries to understand the neuronal mechanisms of the multiple memory traces as adaptations to the particular demands of foraging by a generalist pollinating insect. The study of the functional dynamics of memory thus serves two goals: to unravel the informational sources which guide the sequences and time dependencies of the animal’s choice behavior, and to better understand the neural correlates of the various forms of memory.

[1]  G. Müller,et al.  Experimentelle Beiträge zur Lehre vom Gedächtniss , 1900 .

[2]  Perla b. Ephrussi Experimentelle Beiträge zur Lehre vom Gedächtnis , 1904 .

[3]  I. Pavlov,et al.  Lectures on conditioned reflexes , 1928 .

[4]  C. Murchison,et al.  A handbook of general experimental psychology , 1934 .

[5]  C. L. Hull Learning: II. The Factor of the Conditioned Reflex. , 1934 .

[6]  Masutaro Kuwabara Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica (Mit 1 Textabbildung) , 1957 .

[7]  John Garcia,et al.  Relation of cue to consequence in avoidance learning , 1966 .

[8]  R. Macarthur,et al.  On Optimal Use of a Patchy Environment , 1966, The American Naturalist.

[9]  R. Rescorla Pavlovian conditioning and its proper control procedures. , 1967, Psychological review.

[10]  K. Frisch The dance language and orientation of bees , 1967 .

[11]  W. K. Honig,et al.  Fundamental issues in associative learning : proceedings of a symposium held at Dalhousie University, Halifax, June 1968 , 1969 .

[12]  H. Hécaen Short-term changes in neural activity and behavior: Edited by G. Horn et R.A. Hinde. Cambridge University Press, Cambridge, 1970. 628 pp. £10.40. , 1971 .

[13]  J. Erber The Time — Dependent Storing of Optical Information in the Honeybee , 1972 .

[14]  Randolf Menzel,et al.  The Influence of the Quantity of Reward On the Learning Performance in Honeybees , 1972 .

[15]  F. Newell Information Processing in the Visual Systems of Arthropods , 1973 .

[16]  J. M. Smith,et al.  Optimization Theory in Evolution , 1978 .

[17]  Umlernen einer Honigbiene zwischen gelb- und blau-Belohnung im Dauerversuch , 1978 .

[18]  P. Taylor,et al.  Test of optimal sampling by foraging great tits , 1978 .

[19]  K. Waddington,et al.  Optimal Foraging: On Flower Selection by Bees , 1979, The American Naturalist.

[20]  Randolf Menzel,et al.  Behavioural access to short-term memory in bees , 1979, Nature.

[21]  R. Menzel,et al.  Localization of short‐term memory in the brain of the bee, Apis mellifera , 1980 .

[22]  B. Heinrich,et al.  Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards , 1981, Animal Behaviour.

[23]  J. Pleasants Bumblebee Response to Variation in Nectar Availability , 1981 .

[24]  P. Holland,et al.  Behavioral Studies of Associative Learning in Animals , 1982 .

[25]  L. Cermak Human memory and amnesia , 1982 .

[26]  B. Heinrich Do Bumblebees Forage Optimally, and Does It Matter? , 1983 .

[27]  J. L. Gould,et al.  Ethology and the Natural History of Learning , 1984 .

[28]  G. Pyke Optimal Foraging Theory: A Critical Review , 1984 .

[29]  E. Kandel,et al.  Is there a cell-biological alphabet for simple forms of learning? , 1984, Psychological review.

[30]  B. Heinrich Learning in Invertebrates , 1984 .

[31]  E. Kandel,et al.  The use of simple invertebrate systems to explore psychological issues related to associative learning , 1984 .

[32]  Daniel L. Alkon,et al.  Primary neural substrates of learning and behavioral change , 1984 .

[33]  H. Terrace,et al.  The Biology of Learning , 1984, Dahlem Workshop Reports.

[34]  Donald D. Spencer Principles of Information Processing , 1985 .

[35]  P. Schmid-Hempel How do bees choose flight direction while foraging? , 1985 .

[36]  K. Waddington Cost-intake information used in foraging , 1985 .

[37]  P. Schmid-Hempel,et al.  Nectar-collecting bees use Distance-sensitive movement rules , 1986, Animal Behaviour.

[38]  R. Menzel Memory Traces in Honeybees , 1987 .

[39]  Randolf Menzel,et al.  Neurobiology and Behavior of Honeybees , 1987, Springer Berlin Heidelberg.

[40]  R. Rescorla Behavioral studies of Pavlovian conditioning. , 1988, Annual review of neuroscience.

[41]  M. Bitterman Vertebrate-Invertebrate Comparisons , 1988 .

[42]  R. Rescorla,et al.  The role of response-reinforcer associations increases throughout extended instrumental training , 1988 .

[43]  Johan Billen,et al.  Biology and evolution of social insects , 1992 .

[44]  M. Lindauer Angeborene und erlernte Komponenten in der Sonnenorientierung der Bienen Bemerkungen und Versuche zu einer Mitteilung von Kalmus , 2004, Zeitschrift für vergleichende Physiologie.

[45]  R. Menzel,et al.  Time course of short-term memory depends on associative events , 1986, Naturwissenschaften.

[46]  Paul Schmid-Hempel,et al.  The importance of handling time for the flight directionality in bees , 1984, Behavioral Ecology and Sociobiology.

[47]  E. Vareschi Duftunterscheidung bei der Honigbiene — Einzelzell-Ableitungen und Verhaltensreaktionen , 1971, Zeitschrift für vergleichende Physiologie.

[48]  Rainer Koltermann,et al.  Lern- und Vergessensprozesse bei der Honigbiene — aufgezeigt anhand von Duftdressuren , 1969, Zeitschrift für vergleichende Physiologie.

[49]  M. Lindauer Schwarmbienen auf Wohnungssuche , 1955, Zeitschrift für vergleichende Physiologie.