A Framework for Interdomain and Multioutput Gaussian Processes

One obstacle to the use of Gaussian processes (GPs) in large-scale problems, and as a component in deep learning system, is the need for bespoke derivations and implementations for small variations in the model or inference. In order to improve the utility of GPs we need a modular system that allows rapid implementation and testing, as seen in the neural network community. We present a mathematical and software framework for scalable approximate inference in GPs, which combines interdomain approximations and multiple outputs. Our framework, implemented in GPflow, provides a unified interface for many existing multioutput models, as well as more recent convolutional structures. This simplifies the creation of deep models with GPs, and we hope that this work will encourage more interest in this approach.

[1]  James Hensman,et al.  Gaussian Process Conditional Density Estimation , 2018, NeurIPS.

[2]  Justin Domke,et al.  Importance Weighting and Variational Inference , 2018, NeurIPS.

[3]  Robert C. Martin The open-closed principle , 2000 .

[4]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[5]  Neil D. Lawrence,et al.  Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes , 2016, J. Mach. Learn. Res..

[6]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[7]  Arno Solin,et al.  Variational Fourier Features for Gaussian Processes , 2016, J. Mach. Learn. Res..

[8]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[9]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[10]  Neil D. Lawrence,et al.  Efficient Multioutput Gaussian Processes through Variational Inducing Kernels , 2010, AISTATS.

[11]  Samuel Kaski,et al.  Deep convolutional Gaussian processes , 2018, ECML/PKDD.

[12]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[13]  Neil D. Lawrence,et al.  Latent Force Models , 2009, AISTATS.

[14]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[15]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[16]  Alexis Boukouvalas,et al.  GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..

[17]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[18]  Stéphane Canu,et al.  Operator-valued Kernels for Learning from Functional Response Data , 2015, J. Mach. Learn. Res..

[19]  Carl E. Rasmussen,et al.  Convolutional Gaussian Processes , 2017, NIPS.

[20]  Sean Gerrish,et al.  Black Box Variational Inference , 2013, AISTATS.

[21]  Carl E. Rasmussen,et al.  Bayesian Monte Carlo , 2002, NIPS.

[22]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[23]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[24]  Alexander G. de G. Matthews,et al.  Scalable Gaussian process inference using variational methods , 2017 .

[25]  Charles A. Micchelli,et al.  On Learning Vector-Valued Functions , 2005, Neural Computation.

[26]  Aníbal R. Figueiras-Vidal,et al.  Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.

[27]  Marcus R. Frean,et al.  Dependent Gaussian Processes , 2004, NIPS.

[28]  James Hensman,et al.  MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.

[29]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[30]  James Hensman,et al.  On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes , 2015, AISTATS.

[31]  Miguel Lázaro-Gredilla,et al.  Doubly Stochastic Variational Bayes for non-Conjugate Inference , 2014, ICML.

[32]  James Hensman,et al.  Scalable Variational Gaussian Process Classification , 2014, AISTATS.

[33]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[34]  Mark van der Wilk Sparse Gaussian process approximations and applications , 2019 .

[35]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[36]  Carl E. Rasmussen,et al.  Rates of Convergence for Sparse Variational Gaussian Process Regression , 2019, ICML.

[37]  Richard E. Turner,et al.  A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation , 2016, J. Mach. Learn. Res..

[38]  Marc Peter Deisenroth,et al.  Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.

[39]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[40]  Carl E. Rasmussen,et al.  Understanding Probabilistic Sparse Gaussian Process Approximations , 2016, NIPS.

[41]  Neil D. Lawrence,et al.  Sparse Convolved Gaussian Processes for Multi-output Regression , 2008, NIPS.

[42]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[43]  James Hensman,et al.  Deep Gaussian Processes with Importance-Weighted Variational Inference , 2019, ICML.