A resolution study for imaging and time reversal in random media

We consider the inverse problem of array imaging of active sources (targets) in randomly inhomogeneous media, in a remote sensing regime with significant multiple scattering of the waves by the inhomogeneities. The active source emits a pulse that propagates through the inhomogeneous medium and is captured by an array of aperture a that is far from the source. We consider an analytical model for the matched field imaging functional and study the effect of random inhomogeneities on the resolution of the images produced. In our model the effect of the random medium is quantified by a single parameter, the narrow-band effective aperture of the array ae. We give a robust procedure for estimating ae, which is of great interest in many applications. In time reversal, knowing ae allows us to estimate the refocused spot size, that is, the resolution of the time reversed, back-propagated field, which we can use in applications such as secure communications. The effective aperture ae quantifies in an explicit way the loss of resolution in imaging active sources embedded at unknown locations in a randomly inhomogeneous medium, as well as the gain in resolution beyond the diffraction limit, the super-resolution, in time reversal.

[1]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[2]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[3]  Knut Sølna,et al.  Time-Reversal Aperture Enhancement , 2003, Multiscale Model. Simul..

[4]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[5]  A. P. Anderson Microwave Imaging with Large Antenna Arrays , 1984 .

[6]  J. Litva,et al.  Radar Array Processing , 1993 .

[7]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[8]  B. Borden Mathematical problems in radar inverse scattering , 2002 .

[9]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.

[10]  J. Devaney,et al.  1 Super-resolution Processing of Multi-static Data Using Time Reversal and MUSIC A , 2000 .

[11]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[12]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[13]  Guillaume Bal,et al.  SELF-AVERAGING IN TIME REVERSAL FOR THE PARABOLIC WAVE EQUATION , 2002, nlin/0205025.

[14]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[15]  W. Kuperman,et al.  Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror , 1998 .

[16]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[17]  Lars M. H. Ulander,et al.  Low-frequency ultrawideband array-antenna SAR for stationary and moving target imaging , 1999, Defense, Security, and Sensing.

[18]  Eliane Bécache,et al.  Étude d'un nouvel élément fini mixte permettant la condensation de masse , 1997 .

[19]  Mathias Fink,et al.  Decomposition of the time reversal operator: Detection and selective focusing on two scatterers , 1996 .

[20]  L. Carin,et al.  Wide-area detection of land mines and unexploded ordnance , 2002 .

[21]  Jean-Pierre Fouque,et al.  A time-reversal method for an acoustical pulse propagating in randomly layered media , 1997 .

[22]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[23]  Liliana Borcea,et al.  Statistically stable ultrasonic imaging in random media. , 2002, The Journal of the Acoustical Society of America.

[24]  W. Kuperman,et al.  Iterative time reversal in the ocean , 1997 .

[25]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[26]  A. Fannjiang On time reversal mirrors , 2008, 0811.0132.

[27]  Mathias Fink,et al.  Acoustic time-reversal mirrors , 2001 .

[28]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[29]  D. Jackson,et al.  Narrow‐band performance of phase‐conjugate arrays in dynamic random media. , 1991 .