ERROR ANALYSIS FOR NUMERICAL FORMULATION OF PARTICLE FILTER

As an approximation of the optimal stochastic filter, particle filter is a widely used tool for numerical prediction of complex systems when observation data are available. In this paper, we conduct an error analysis from a numerical analysis perspective. That is, we investigate the numerical error, which is defined as the difference between the numerical implementation of particle filter and its continuous counterpart, and demonstrate that the error consists of discretization errors for solving the dynamic equations numerically and sampling errors for generating the random particles. We then establish convergence of the numerical particle filter to the continuous optimal filter and provide bounds for the convergence rate. Remarkably, our analysis suggests that more frequent data assimilation may lead to larger numerical errors of the particle filter. Numerical examples are provided to verify the theoretical findings.

[1]  Dongbin Xiu,et al.  On numerical properties of the ensemble Kalman filter for data assimilation , 2008 .

[2]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[3]  Stephen E. Cohn,et al.  An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[4]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[5]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[6]  Sebastian Thrun,et al.  Particle Filters in Robotics , 2002, UAI.

[7]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[8]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[9]  Xiao-Li Hu,et al.  A Basic Convergence Result for Particle Filtering , 2008, IEEE Transactions on Signal Processing.

[10]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[11]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[12]  K. Ide,et al.  A Method for Assimilation of Lagrangian Data , 2003 .

[13]  David J. Fleet,et al.  Lattice Particle Filters , 2001, UAI.

[14]  A. Budhiraja,et al.  Modified particle filter methods for assimilating Lagrangian data into a point-vortex model , 2008 .

[15]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[16]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[17]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[18]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[19]  K. Ide,et al.  A Method for Assimilating Lagrangian Data into a Shallow-Water-Equation Ocean Model , 2006 .

[20]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[21]  J. L. Roux An Introduction to the Kalman Filter , 2003 .