Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

Abstract This paper extends the theoretical framework presented in the preceding Part I to the lifetime distribution of quasibrittle structures failing at the fracture of one representative volume element under constant amplitude fatigue. The probability distribution of the critical stress amplitude is derived for a given number of cycles and a given minimum-to-maximum stress ratio. The physical mechanism underlying the Paris law for fatigue crack growth is explained under certain plausible assumptions about the damage accumulation in the cyclic fracture process zone at the tip of subcritical crack. This law is then used to relate the probability distribution of critical stress amplitude to the probability distribution of fatigue lifetime. The theory naturally yields a power-law relation for the stress-life curve (S-N curve), which agrees with Basquin's law. Furthermore, the theory indicates that, for quasibrittle structures, the S-N curve must be size dependent. Finally, physical explanation is provided to the experimentally observed systematic deviations of lifetime histograms of various ceramics and bones from the Weibull distribution, and their close fits by the present theory are demonstrated.

[1]  R. Ghaffarian,et al.  Tensile Strength of Unidirectionally Reinforced Composites — II , 1982 .

[2]  M. Polanyi,et al.  The Theory of Rate Processes , 1942, Nature.

[3]  O. Basquin The exponential law of endurance tests , 1910 .

[4]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Drahomír Novák,et al.  Asymptotic Prediction of Energetic-Statistical Size Effect from Deterministic Finite-Element Solutions , 2007 .

[6]  John Goodman,et al.  Mechanics applied to engineering , 1904 .

[7]  S. Phoenix The Asymptotic Time to Failure of a Mechanical System of Parallel Members , 1978 .

[8]  M. Hojo,et al.  Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates , 2004 .

[9]  A. Evans,et al.  A damage model of creep crack growth in polycrystals , 1983 .

[10]  S. D. Manning,et al.  A simple second order approximation for stochastic crack growth analysis , 1996 .

[11]  H. Wagner,et al.  Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials , 1989 .

[12]  Drahomír Novák,et al.  ENERGETIC-STATISTICAL SIZE EFFECT IN QUASIBRITTLE FAILURE AT CRACK INITIATION , 2000 .

[13]  Drahomír Novák,et al.  PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. II: APPLICATION , 2000 .

[14]  Zdenek P. Bazant,et al.  Nano-mechanics based modeling of lifetime distribution of quasibrittle structures , 2009 .

[15]  M. Bazant Stochastic renormalization group in percolation: I. fluctuations and crossover , 2002, cond-mat/0206198.

[16]  Achintya Haldar,et al.  Probability, Reliability and Statistical Methods in Engineering Design (Haldar, Mahadevan) , 1999 .

[17]  Hidehiro Kishimoto,et al.  Cyclic Fatigue in Ceramics , 1995 .

[18]  E. Kaxiras Atomic and electronic structure of solids , 2003 .

[19]  Jia-Liang Le,et al.  Nonlocal boundary layer (NBL) model: overcoming boundary condition problems in strength statistics and fracture analysis of quasibrittle materials , 2010 .

[20]  W Duckett,et al.  Risk analysis and the acceptable probability of failure , 2005 .

[21]  Mohammad Taghi Kazemi,et al.  Size Effect in Fracture of Ceramics and Its Use To Determine Fracture Energy and Effective Process Zone Length , 1990 .

[22]  Henry Eyring,et al.  Mechanical Properties of Polymeric Materials , 1943 .

[23]  C. Effect of Temperature and Humidity on Fracture Energy of Concrete , 2022 .

[24]  W. Weibull,et al.  The phenomenon of rupture in solids , 1939 .

[25]  S. Suresh Fatigue of materials , 1991 .

[26]  Peter Schwartz,et al.  Lifetime statistics for single Kevlar 49 filaments in creep-rupture , 1986 .

[27]  C. Chiao,et al.  Experimental Verification of an Accelerated Test for Predicting the Lifetime of Organic Fiber Composites , 1977 .

[28]  Damian N. Burch,et al.  Corrections to the Central Limit Theorem for Heavy-tailed Probability Densities , 2011, 1103.4306.

[29]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[30]  S. L. Phoenix,et al.  The Chain-of-Bundles Probability Model For the Strength of Fibrous Materials I: Analysis and Conjectures , 1978 .

[31]  R. Ritchie Incomplete self-similarity and fatigue-crack growth , 2005 .

[32]  Peter Greil,et al.  Lifetime prediction of CAD/CAM dental ceramics. , 2002, Journal of biomedical materials research.

[33]  S. Stover,et al.  Volume effects on fatigue life of equine cortical bone. , 2007, Journal of biomechanics.

[34]  Mircea Grigoriu,et al.  Probability and Materials: from Nano- to Macro-Scale: A summary , 2006 .

[35]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Z. Bažant,et al.  Scaling of quasibrittle fracture: asymptotic analysis , 1997 .

[37]  Bernard D. Coleman,et al.  Time Dependence of Mechanical Breakdown in Bundles of Fibers. I. Constant Total Load , 1957 .

[38]  J. R. Ockendon,et al.  SIMILARITY, SELF‐SIMILARITY AND INTERMEDIATE ASYMPTOTICS , 1980 .

[39]  H. Daniels The statistical theory of the strength of bundles of threads. I , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  S. N. Zhurkov,et al.  Atomic mechanism of fracture of solid polymers , 1974 .

[41]  S. Phoenix,et al.  Creep rupture of brittle matrix composites reinforced with time dependent fibers: Scalings and Monte Carlo simulations , 1995 .

[42]  G. Wegner H. Kausch: Polymer Fracture, in der Reihe: H.‐J. Cantow et al. (Eds.): Polymers — Properties and Applications, Vol. 2, Springer‐Verlag, Berlin, Heidelberg, New York 1978. 180 Abbildungen, 332 Seiten, Preis: DM 128,‐ , 1979 .

[43]  Aziz,et al.  The activation strain tensor: Nonhydrostatic stress effects on crystal-growth kinetics. , 1991, Physical review. B, Condensed matter.

[44]  G. C. Salivar,et al.  Statistical modeling of fatigue-crack growth in a nickel-base superalloy , 1983 .

[45]  Zdeněk P. Bažant,et al.  Energetic–statistical size effect simulated by SFEM with stratified sampling and crack band model , 2007 .

[46]  J. N. Yang,et al.  Statistical Crack Propagation in Fastener Holes Under Spectrum Loading , 1983 .

[47]  X. Frank Xu,et al.  A multiscale stochastic finite element method on elliptic problems involving uncertainties , 2007 .

[48]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[49]  N. Nemeth,et al.  Reliability Analysis of Uniaxially Ground Brittle Materials , 1995 .

[50]  Z. Bažant,et al.  Scaling of structural strength , 2003 .

[51]  G. I. Barenblatt,et al.  INCOMPLETE SELF‐SIMILARITY OF FATIGUE IN THE LINEAR RANGE OF CRACK GROWTH , 1980 .

[52]  T. Fett A fracture-mechanical theory of subcritical crack growth in ceramics , 1992 .

[53]  P. Stanley,et al.  Assessment of Surface Strength and Bulk Strength of a Typical Brittle Material , 1985 .

[54]  Bazant Largest cluster in subcritical percolation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  K. Tanaka,et al.  Fatigue growth threshold of small cracks , 1981, International Journal of Fracture.

[56]  K J Anusavice,et al.  Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. , 2000, Journal of dentistry.

[57]  Architekten-Verein,et al.  Zeitschrift für Bauwesen , 1931 .

[58]  S. Leigh Phoenix,et al.  Stochastic strength and fatigue of fiber bundles , 1978, International Journal of Fracture.

[59]  Bernard D. Coleman,et al.  Statistics and Time Dependence of Mechanical Breakdown in Fibers , 1958 .

[60]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[61]  Remco van der Hofstad,et al.  Maximal Clusters in Non-Critical Percolation and Related Models , 2004, math/0402169.

[62]  Z. Bažant,et al.  Statistics of strength of ceramics: finite weakest-link model and necessity of zero threshold , 2008 .

[63]  Nigel D Goldenfeld,et al.  Crystals, Defects and Microstructures: Modeling across Scales , 2002 .

[64]  Joel H. Spencer,et al.  Probabilistic methods , 1985, Graphs Comb..

[65]  Yunping Xi,et al.  Statistical Size Effect in Quasi‐Brittle Structures: II. Nonlocal Theory , 1991 .

[66]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[67]  H. Kahn,et al.  Bioinspired micro-composite structure , 2005 .

[68]  Theo Fett,et al.  Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection , 1999 .

[69]  L. Gauckler,et al.  Cyclic fatigue in water of veneer-framework composites for all-ceramic dental bridges. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[71]  C. N. Robinson,et al.  A comparison of reaction rate models for the fracture of solids , 1970 .

[72]  S. N. Zhurkov Kinetic concept of the strength of solids , 1965, International journal of fracture mechanics.

[73]  Alois Starlinger,et al.  Reliability Analysis of Structural Ceramic Components Using a Three-Parameter Weibull Distribution , 1992 .

[74]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[75]  K. Strecker,et al.  Evaluation of the Reliability of Si 3 N 4 -Al 2 O 3 -CTR 2 O 3 Ceramics , 2003 .

[76]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[77]  L. Gauckler,et al.  Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[78]  Z. Bažant,et al.  Size Effect on Strength of Laminate-Foam Sandwich Plates , 2006 .

[79]  S. L. Phoenix,et al.  Bounds on the probability of failure of composite materials , 1979, International Journal of Fracture.

[80]  Zdeněk P. Bažant,et al.  Scaling of Strength and Lifetime Distributions of Quasibrittle Structures , 2011 .

[81]  Peter Grassl,et al.  Random Lattice-Particle Simulation of Statistical Size Effect in Quasi-Brittle Structures Failing at Crack Initiation , 2009 .

[82]  R. E. Bullock,et al.  Strength Ratios of Composite Materials in Flexure and in Tension , 1974 .

[83]  Z. Bažant,et al.  Scaling theory for quasibrittle structural failure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  R. Michel,et al.  FACTOR OF SAFETY AND WORKING STRESSES OF MARINE PROPULSION SHAFTING , 2009 .

[85]  Z. Bažant,et al.  Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Martin Z. Bazant,et al.  Subcritical crack growth law and its consequences for lifetime statistics and size effect of quasibrittle structures , 2009 .

[87]  Bernard Gross Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens with Volume or Surface Flaw Failure , 1996 .

[88]  Peter Schwartz,et al.  Effects of Strain Rate and Gauge Length on the Failure of Ultra-High Strength Polyethylene Fibers , 1986 .

[89]  Surendra P. Shah,et al.  Fracture mechanics of concrete , 1995 .

[90]  Drahomír Novák,et al.  PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. I: THEORY , 2000 .

[91]  S. Batdorf,et al.  Tensile Strength of Unidirectionally Reinforced Composites — I , 1982 .

[92]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[93]  M. Bazant,et al.  Size Effect on Strength and Lifetime Distributions of Quasibrittle Structures Implied by Interatomic Bond Break Activation , 2008 .

[94]  J. Weertman,et al.  Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane , 1966 .

[95]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[96]  Johannes Weertman,et al.  Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane , 1966 .

[97]  Richard M. Christensen,et al.  A Physically Based Cumulative Damage Formalism , 2008 .

[98]  S. Baxter,et al.  A framework for stochastic mechanics , 2006 .

[99]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[100]  Martin Z. Bazant,et al.  Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics , 2009, Proceedings of the National Academy of Sciences.

[101]  Anthony G. Evans,et al.  A method for evaluating the time-dependent failure characteristics of brittle materials — and its application to polycrystalline alumina , 1972 .

[102]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[103]  John R. Rice,et al.  Mechanics of Crack Tip Deformation and Extension by Fatigue , 1967 .

[104]  A review of recent experimental results concerning the strength and time dependent behavior of fibrous poly(paraphenylene terephthalamide) , 1987 .

[105]  Peter Schwartz,et al.  A Study of Statistical Variability in the Strength of Single Aramid Filaments , 1984 .

[106]  Zdeněk P. Bažant,et al.  Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture , 2007 .

[107]  K. Krausz,et al.  Fracture Kinetics of Crack Growth , 1988 .

[108]  Luke Tierney,et al.  Asymptotic bounds on the time to fatigue failure of bundles of fibers under local load sharing , 1982, Advances in Applied Probability.

[109]  Z. Bažant,et al.  Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete , 1990 .

[110]  Z. Bažant,et al.  Strength distribution of dental restorative ceramics: finite weakest link model with zero threshold. , 2009, Dental materials : official publication of the Academy of Dental Materials.

[111]  Hong-lim Lee,et al.  Modelling of cyclic fatigue stress for life prediction of structural ceramics , 1995 .

[112]  Tatsuo Sakai,et al.  A statistical aspect on fatigue behavior of alumina ceramics in rotating bending , 1989 .

[113]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[114]  Sivasambu Mahesh,et al.  Lifetime distributions for unidirectional fibrous composites under creep-rupture loading , 2004 .

[115]  D. B. Burr,et al.  Shear Strength and Fatigue Properties of Human Cortical Bone Determined from Pure Shear Tests , 2001, Calcified Tissue International.

[116]  Chung-Yuen Hui,et al.  Size effects in the distribution for strength of brittle matrix fibrous composites , 1997 .

[117]  S. L. Phoenix,et al.  A statistical model for the time dependent failure of unidirectional composite materials under local elastic load-sharing among fibers , 1983 .

[118]  R. L. Smith,et al.  LOWER TAIL ANALYSIS OF THE DISTRIBUTION OF THE STRENGTH OF LOAD-SHARING SYSTEMS , 1983 .

[119]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[120]  Richard L. Smith The Asymptotic Distribution of the Strength of a Series-Parallel System with Equal Load-Sharing , 1982 .

[121]  Zdenek P. Bazant,et al.  Size Effect in Fatigue Fracture of Concrete , 1991 .

[122]  S. Winterstein,et al.  Random Fatigue: From Data to Theory , 1992 .

[123]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[124]  Zdenek P. Bazant,et al.  Size Effect and Fracture Characteristics of Composite Laminates , 1996 .