The semiclassical Sobolev orthogonal polynomials: A general approach
暂无分享,去创建一个
[1] R. S. Costas-Santos,et al. Second structure relation for q-semiclassical polynomials of the Hahn Tableau ✩ , 2007, 0807.1353.
[2] Francisco Marcellán,et al. Asymptotics and Zeros of Sobolev Orthogonal Polynomials on Unbounded Supports , 2006, math/0604074.
[3] L. Khériji. AN INTRODUCTION TO THE Hq-SEMICLASSICAL ORTHOGONAL POLYNOMIALS , 2003 .
[4] Rene F. Swarttouw,et al. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.
[5] Andrei Martínez-Finkelshtein,et al. Analytic aspects of Sobolev orthogonal polynomials revisited , 2001 .
[6] Francisco Marcellán,et al. q-Coherent pairs and q-orthogonal polynomials , 2002, Appl. Math. Comput..
[7] M. Anshelevich,et al. Introduction to orthogonal polynomials , 2003 .
[8] F. Marcellán,et al. Second structure relation for semiclassical orthogonal polynomials , 2007 .
[9] Pascal Maroni,et al. Variations around classical orthogonal polynomials. Connected problems , 1993 .
[10] D. Lewis. Polynomial Least Square Approximations , 1947 .
[11] J. C. Medem. A family of singular semi-classical functionals , 2002 .
[12] H. G. Meijer,et al. Determination of All Coherent Pairs , 1997 .
[13] F. Marcellán,et al. Orthogonal polynomials on Sobolev spaces: old and new directions , 1993 .
[14] Arieh Iserles,et al. On polynomials orthogonal with respect to certain Sobolev inner products , 1991 .
[15] P. Maroni. Semi-classical character and finite-type relations between polynomial sequences , 1999 .
[16] I. Area,et al. Classification of all δ-Coherent Pairs , 2000 .
[17] Andrei Martínez-Finkelshtein,et al. Asymptotic properties of Sobolev orthogonal polynomials , 1998 .