The age, metal source and genesis of the Nifty copper deposit in the context of the geological evolution of the Paterson Province, Western Australia

[1]  C. Kirkland,et al.  The Archean Fortescue large igneous province: A result of komatiite contamination by a distinct Eo-Paleoarchean crust , 2018, Precambrian Research.

[2]  M. Hitzman,et al.  Discussion: “Age of the Zambian Copperbelt” by Sillitoe et al. (2017) Mineralium Deposita , 2017, Mineralium Deposita.

[3]  Alan J. Wilson,et al.  Age of the Zambian Copperbelt , 2017, Mineralium Deposita.

[4]  T. Mernagh,et al.  Magmatic Hydrothermal Fluids at the Sedimentary Rock-Hosted, Intrusion-Related Telfer Gold-Copper Deposit, Paterson Orogen, Western Australia: Pressure-Temperature-Composition Constraints on the Ore-Forming Fluids , 2016 .

[5]  T. Mernagh,et al.  Magmatic Hydrothermal Fluids at the Sedimentary Rock-hosted, Intrusion-related Telfer Gold-Copper Deposit, Paterson Orogen, Western Australia: P-T-X Constraints on the Ore Forming Fluids , 2016 .

[6]  L. Reisberg,et al.  Diagenetic origin of the stratiform Cu–Co deposit at Kamoto in the Central African Copperbelt , 2015, Mineralium Deposita.

[7]  R. Maas,et al.  ISOTOPIC CONSTRAINTS (Pb, Rb-Sr, Sm-Nd) ON THE SOURCES OF EARLY CAMBRIAN PEGMATITES WITH BORON AND BERYLLIUM MINERALS IN THE LARSEMANN HILLS, PRYDZ BAY, ANTARCTICA , 2015 .

[8]  M. McCulloch Sm‐Nd Isotopic Constraints on the Evolution of Precambrian Crust in the Australian Continent , 2013 .

[9]  N. McNaughton,et al.  Structural controls and timing of fault-hosted manganese at Woodie Woodie, East Pilbara, Western Australia , 2013 .

[10]  R. Drysdale,et al.  U and Pb variability in older speleothems and strategies for their chronology , 2012 .

[11]  R. Drysdale,et al.  High-resolution U–Pb dating of an Early Pleistocene stalagmite from Corchia Cave (central Italy) , 2012 .

[12]  R. Armstrong,et al.  Reconnaissance-style EPMA chemical U–Th–Pb dating of uraninite , 2011 .

[13]  Zheng‐Xiang Li,et al.  Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia , 2011 .

[14]  R. Zierenberg,et al.  Strontium and oxygen isotopic profiles through 3 km of hydrothermally altered oceanic crust in the Reykjanes Geothermal System, Iceland , 2010 .

[15]  A. Boyce,et al.  Fluid-rock interaction during formation of metamorphic quartz veins: A REE and stable isotope study from the Rhenish Massif, Germany , 2010, American Journal of Science.

[16]  M. V. Kranendonk,et al.  Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton , 2010 .

[17]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[18]  K. Gessner,et al.  Structural Control on Copper Mineralisation at Nifty, Northwest Paterson Orogen, Western Australia. Deformation in the Desert-Geological Society of Australia Specialist Group: Tectonics and Structural Geology Meeting, Alice Springs, Australia, 9-13 July 2007: 94 , 2007 .

[19]  K. Jensen,et al.  Uraninite recrystallization and Pb loss in the Oklo and Bangombé natural fission reactors, Gabon , 2005 .

[20]  B. Kamber,et al.  A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia , 2005 .

[21]  J. Schneider,et al.  A Sr isotope study on fluorite and siderite from post-orogenic mineral veins in the eastern Harz Mountains, Germany , 2003 .

[22]  B. Kamber,et al.  A refined solution to Earth’s hidden niobium: implications for evolution of continental crust and mode of core formation , 2003 .

[23]  T. K. Kyser,et al.  New 40Ar/39Ar ages from the central Paterson Orogen, Western Australia , 2003 .

[24]  J. Woodhead A simple method for obtaining highly accurate Pb isotope data by MC-ICP-MS , 2002 .

[25]  J. Gemmell,et al.  LEAD ISOTOPE EVOLUTION OF MINERAL DEPOSITS IN THE PROTEROZOIC THROSSELL GROUP, WESTERN AUSTRALIA , 2002 .

[26]  R. Berry,et al.  The Geology of the Nifty Copper Deposit, Throssell Group,Western Australia: Implications for Ore Genesis , 2001 .

[27]  N. Arndt,et al.  The oldest continental and oceanic plateaus: Geochemistry of basalts and komatiites of the Pilbara Craton, Australia , 2001 .

[28]  L. Bagas Geology of the Paterson 1:100 000 sheet , 2000 .

[29]  M. Wingate,et al.  Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia , 1998 .

[30]  S. Jackson,et al.  Variations in REE and Sr-isotope chemistry of carbonate gangue, Castellanos Zn-Pb deposit, Cuba , 1998 .

[31]  D. Groves,et al.  A reinterpretation of the role of granitoids in the genesis of Neoproterozoic gold mineralization in the Telfer Dome, Western Australia , 1997 .

[32]  P. Négrel,et al.  A strontium isotopic study of mineral and surface waters from the Cézallier (Massif Central, France): implications for mixing processes in areas of disseminated emergences of mineral waters , 1997 .

[33]  D. K. McDaniel,et al.  Use of surface-controlled REE sectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal SmNd age , 1997 .

[34]  S. Smith Geology and geochemistry of the Warrabarty carbonate-hosted Zn-Pb Prospect, Paterson Orogen, Western Australia , 1996 .

[35]  K. Bell,et al.  Nd, Pb, and Sr isotope systematics of fluorite at the Amba Dongar carbonatite complex, India; evidence for hydrothermal and crustal fluid mixing , 1995 .

[36]  T. Mernagh,et al.  Fluid and mass transfer during metabasalt alteration and copper mineralization at Mount Isa, Australia , 1995 .

[37]  M. Walter,et al.  Neoproterozoic stratigraphy of the Centralian Superbasin, Australia , 1995 .

[38]  V. Croze,et al.  REE fractionation between scheelite and apatite in hydrothermal conditions , 1993 .

[39]  H. Krouse,et al.  Contrasting alteration assemblages in metabasites from Mount Isa, Queensland; implications for copper ore genesis , 1993 .

[40]  D. Krstić,et al.  The age of unconformity-related uranium mineralization in the Athabasca Basin, northern Saskatchewan , 1992 .

[41]  D. Groves,et al.  Late proterozoic fractionated granitoids of the mineralized Telfer area, Paterson province, Western Australia , 1991 .

[42]  A. Michard Rare earth element systematics in hydrothermal fluids , 1989 .

[43]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[44]  G. Gruau,et al.  Age of the Archean Talga-Talga Subgroup, Pilbara Block, Western Australia, and early evolution of the mantle: new SmNd isotopic evidence , 1987 .

[45]  A. Glikson,et al.  REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution , 1981 .

[46]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .