Snake Venom Gland Organoids

[1]  J. Visvader,et al.  High-resolution 3D imaging of fixed and cleared organoids , 2019, Nature Protocols.

[2]  J. Calvete,et al.  Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom. , 2019, Journal of proteomics.

[3]  A. Turner,et al.  Friends or Foes? Emerging Impacts of Biological Toxins. , 2019, Trends in biochemical sciences.

[4]  J. Calvete,et al.  When one phenotype is not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species , 2019, Proceedings of the Royal Society B.

[5]  H. Clevers,et al.  Identification of Enteroendocrine Regulators by Real-Time Single-Cell Differentiation Mapping , 2019, Cell.

[6]  Paul Vulto,et al.  A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport , 2018, Fluids and Barriers of the CNS.

[7]  Hans Clevers,et al.  Use and application of 3D-organoid technology. , 2018, Human molecular genetics.

[8]  T. Nguyen,et al.  Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient , 2018, Nature Cell Biology.

[9]  R. Westerink,et al.  Human iPSC‐derived neuronal models for in vitro neurotoxicity assessment , 2018, Neurotoxicology.

[10]  J. Calvete,et al.  The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms , 2018, Communications Biology.

[11]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[12]  Sagar,et al.  FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data , 2017, Nature Methods.

[13]  Thomas Hankemeier,et al.  Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes , 2017, Nature Communications.

[14]  J. Kool,et al.  Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise , 2017, British journal of haematology.

[15]  M. Dingemans,et al.  Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures. , 2016, Neurotoxicology.

[16]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[17]  S. Serrano,et al.  Dynamic Rearrangement in Snake Venom Gland Proteome: Insights into Bothrops jararaca Intraspecific Venom Variation. , 2016, Journal of proteome research.

[18]  Hans Clevers,et al.  Modeling Development and Disease with Organoids , 2016, Cell.

[19]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[20]  Nick Barker,et al.  Organoids as an in vitro model of human development and disease , 2016, Nature Cell Biology.

[21]  B. Giepmans,et al.  Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals , 2015, Stem cell reports.

[22]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[23]  V. Tsetlin Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. , 2015, Trends in pharmacological sciences.

[24]  I. Rietjens,et al.  Detection of marine neurotoxins in food safety testing using a multielectrode array. , 2014, Molecular nutrition & food research.

[25]  J. Calvete,et al.  Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms , 2014, Proceedings of the National Academy of Sciences.

[26]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[27]  L. A. Calderon,et al.  Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry , 2014, BioMed research international.

[28]  J. Logan,et al.  The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system , 2013, Proceedings of the National Academy of Sciences.

[29]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[30]  Po-Han Chen,et al.  The structural basis of R-spondin recognition by LGR5 and RNF43. , 2013, Genes & development.

[31]  J. Gutiérrez,et al.  Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. , 2013, Toxicon : official journal of the International Society on Toxinology.

[32]  H. Clevers,et al.  Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors , 2012, Nature.

[33]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[34]  Hans Clevers,et al.  A functional CFTR assay using primary cystic fibrosis intestinal organoids , 2013, Nature Medicine.

[35]  Hans Clevers,et al.  Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. , 2011, Gastroenterology.

[36]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.

[37]  J. H. Koolstra,et al.  The BMP Antagonist Follistatin-Like 1 Is Required for Skeletal and Lung Organogenesis , 2011, PloS one.

[38]  J. Buchner,et al.  The heat shock response: life on the verge of death. , 2010, Molecular cell.

[39]  L. Guddat,et al.  Crystal structure of textilinin‐1, a Kunitz‐type serine protease inhibitor from the venom of the Australian common brown snake (Pseudonaja textilis) , 2009, The FEBS journal.

[40]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[41]  Hans Clevers,et al.  Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate , 2009, Cell.

[42]  L. van der Weerd,et al.  Evolution and diversification of the Toxicofera reptile venom system. , 2009, Journal of proteomics.

[43]  J. Fox,et al.  Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures , 2008, Proteomics.

[44]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[45]  R. Markus,et al.  Long-term primary culture of secretory cells of Bothrops jararaca venom gland for venom production in vitro , 2006, Nature Protocols.

[46]  Corey M. McCann,et al.  The cholinergic antagonist α-bungarotoxin also binds and blocks a subset of GABA receptors , 2006 .

[47]  T. Morita,et al.  Structure and function of snake venom cysteine-rich secretory proteins. , 2004, Toxicon : official journal of the International Society on Toxinology.

[48]  P. Kuchel,et al.  Identification of a Novel Family of Proteins in Snake Venoms , 2003, Journal of Biological Chemistry.

[49]  E. Mulugeta,et al.  Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. , 2000, Biochimie.

[50]  C. Diniz,et al.  Primary culture of venom gland cells from the South American rattlesnake (Crotalus durissus terrificus). , 1999, Toxicon : official journal of the International Society on Toxinology.

[51]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[52]  C. Tsou,et al.  Protein disulfide isomerase is both an enzyme and a chaperone , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[53]  S. Mackessy Morphology and ultrastructure of the venom glands of the northern pacific rattlesnake Crotalus viridis oreganus , 1991, Journal of morphology.

[54]  E. Kochva,et al.  Localization of venom antigens in the venom gland of Vipera plaestinae using a fluorescent-antibody technique. , 1969, Toxicon : official journal of the International Society on Toxinology.

[55]  H. Snippert,et al.  Live imaging of cell division in 3D stem-cell organoid cultures. , 2018, Methods in cell biology.

[56]  David J. Williams,et al.  Snakebite envenoming , 2017, Nature Reviews Disease Primers.

[57]  P. Ho,et al.  Phospholipase A2 inhibitors (βPLIs) are encoded in the venom glands of Lachesis muta (Crotalinae, Viperidae) snakes. , 2011, Toxicon : official journal of the International Society on Toxinology.

[58]  R. Markus,et al.  Venom production in long-term primary culture of secretory cells of the Bothrops jararaca venom gland. , 2006, Toxicon : official journal of the International Society on Toxinology.

[59]  M. Ohno,et al.  Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. , 2005, Toxicon : official journal of the International Society on Toxinology.

[60]  S. Nirthanan,et al.  Three-Finger α-Neurotoxins and the Nicotinic Acetylcholine Receptor, Forty Years On , 2004 .

[61]  A. Harvey,et al.  Twenty years of dendrotoxins. , 2001, Toxicon : official journal of the International Society on Toxinology.

[62]  R. Theakston,et al.  Venom production in snake venom gland cells cultured in vitro. , 1989, Toxicon.

[63]  E. Kochva The origin of snakes and evolution of the venom apparatus. , 1987, Toxicon : official journal of the International Society on Toxinology.

[64]  R. Theakston,et al.  An investigation of venom secretion by the venom gland cells of the carpet viper (Echis carinatus). , 1986, Toxicon : official journal of the International Society on Toxinology.