An interval nonparametric regression method

This paper proposes a nonparametric multiple regression method for interval data. Regression smoothing investigates the association between an explanatory variable and a response variable. Here, each interval variable of the input data is represented by its range and center and a smooth function between a pair of vector of interval variables is defined. In order to test the suitability of the proposed model, a simulation study is undertaken and an application using thirteen project data of the NASA repository to estimate interval software size is also considered. These real data represent variability and/or uncertainty innate to the project data. The prediction quality is assessed by a mean magnitude of relative errors calculated from test data.

[1]  Renata M. C. R. de Souza,et al.  A robust method for linear regression of symbolic interval data , 2010, Pattern Recognit. Lett..

[2]  Michael R. Lyu,et al.  Robust Regularized Kernel Regression , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Edwin Diday,et al.  Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .

[4]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[5]  Francisco de A. T. de Carvalho,et al.  Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..

[6]  G. Cordeiro,et al.  Bivariate symbolic regression models for interval-valued variables , 2011 .

[7]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[8]  James Bielak Improving Size Estimates Using Historical Data , 2000, IEEE Softw..

[9]  Yue Jiang,et al.  Techniques for evaluating fault prediction models , 2008, Empirical Software Engineering.

[10]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[11]  Adriano Lorena Inácio de Oliveira,et al.  Estimation of software project effort with support vector regression , 2006, Neurocomputing.

[12]  Renata M. C. R. de Souza,et al.  Robust regression with application to symbolic interval data , 2013, Eng. Appl. Artif. Intell..

[13]  Hans-Hermann Bock,et al.  Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..

[14]  E. Nadaraya On Estimating Regression , 1964 .