A primal—dual affine-scaling potential-reduction algorithm for linear programming

We propose a potential-reduction algorithm which always uses the primal—dual affine-scaling direction as a search direction. We choose a step size at each iteration of the algorithm such that the potential function does not increase, so that we can take a longer step size than the minimizing point of the potential function. We show that the algorithm is polynomial-time bounded. We also propose a low-complexity algorithm, in which the centering direction is used whenever an iterate is far from the path of centers.

[1]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[2]  Earl R. Barnes,et al.  A variation on Karmarkar’s algorithm for solving linear programming problems , 1986, Math. Program..

[3]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[4]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[5]  Clyde L. Monma,et al.  An Implementation of a Primal-Dual Interior Point Method for Linear Programming , 1989, INFORMS J. Comput..

[6]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[7]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[8]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[9]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[10]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[11]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[12]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[13]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[14]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[15]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[16]  Michael J. Todd A Low Complexity Interior-Point Algorithm for Linear Programming , 1992, SIAM J. Optim..

[17]  Sanjay Mehrotra,et al.  Quadratic Convergence in a Primal-Dual Method , 1993, Math. Oper. Res..

[18]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[19]  S. Huang,et al.  Near boundary behavior of primal—dual potential reduction algorithms for linear programming , 1993, Math. Program..

[20]  Yin Zhang,et al.  A quadratically convergent O( $$\sqrt n $$ L)-iteration algorithm for linear programming , 1993, Math. Program..

[21]  Masakazu Muramatsu,et al.  Global Convergence of a Long-Step Affine Scaling Algorithm for Degenerate Linear Programming Problems , 1995, SIAM J. Optim..