Simultaneous roles for Ca2+ in excitation and adaptation of Limulus ventral photoreceptors.

[1]  J. Schultz,et al.  Characterization of a Ca2+-dependent guanylate cyclase in the excitable ciliary membrane from Paramecium. , 2005, European journal of biochemistry.

[2]  R. Payne,et al.  Protein kinase C‐induced disorganization and endocytosis of photosensitive membrane in Limulus ventral photoreceptors , 2002, The Journal of comparative neurology.

[3]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[4]  J. Lisman,et al.  A cGMP-gated channel subunit in Limulus photoreceptors , 2001, Visual Neuroscience.

[5]  J. Lisman,et al.  Inhibitors of guanylate cyclase inhibit phototransduction in Limulus ventral photoreceptors , 2001, Visual Neuroscience.

[6]  R. Payne,et al.  Immunocytochemical localization of opsin, visual arrestin, myosin III, and calmodulin in Limulus lateral eye retinular cells and ventral photoreceptors , 2001, The Journal of comparative neurology.

[7]  M. Estacion,et al.  Regulation of Drosophila transient receptor potential‐like (TrpL) channels by phospholipase C‐dependent mechanisms , 2001, The Journal of physiology.

[8]  J. Vente,et al.  Cyclic GMP in lateral eyes of the horseshoe crab Limulus , 2000, Vision Research.

[9]  S. Ćavar,et al.  Divergent mechanisms for phototransduction of invertebrate microvillar photoreceptors , 2000, Visual Neuroscience.

[10]  R. Payne,et al.  Timing of Ca2+ Release from Intracellular Stores and the Electrical Response of Limulus Ventral Photoreceptors to Dim Flashes , 2000, The Journal of general physiology.

[11]  R. Payne,et al.  Protein Kinase C Activators Inhibit the Visual Cascade inLimulus Ventral Photoreceptors at an Early Stage , 1999, The Journal of Neuroscience.

[12]  M. Dorlöchter,et al.  Effects of Calcium and Cyclopiazonic Acid on the Photoresponse in the Limulus Ventral Photoreceptor , 1999 .

[13]  Roger C. Hardie,et al.  Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL , 1999, Nature.

[14]  L. Kass,et al.  Inhibition of the calcineurin-like protein phosphatase activity in Limulus ventral eye photoreceptor cells alters the characteristics of the spontaneous quantal bumps and the light-mediated inward currents, and enhances arrestin phosphorylation , 1998, Visual Neuroscience.

[15]  R. Payne,et al.  Light-induced Mn2+ influx in Limulus ventral photoreceptors , 1998, Journal of Comparative Physiology A.

[16]  C. Taylor,et al.  Putative inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in Limulus photoreceptors , 1998, Neuroscience.

[17]  M. Gray-Keller,et al.  Rescue of excitation by inositol following Li+-induced block in Limulus ventral photoreceptors , 1998, Visual Neuroscience.

[18]  J. Lisman,et al.  Ca2+/calmodulin-binding peptides block phototransduction in Limulus ventral photoreceptors: evidence for direct inhibition of phospholipase C. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  C. Zuker,et al.  Calmodulin Regulation of Drosophila Light-Activated Channels and Receptor Function Mediates Termination of the Light Response In Vivo , 1997, Cell.

[20]  E. Neher,et al.  Linearized Buffered Ca2+ Diffusion in Microdomains and Its Implications for Calculation of [Ca2+] at the Mouth of a Calcium Channel , 1997, The Journal of Neuroscience.

[21]  A. Fein,et al.  A role for hydrolysis of inositol 1,4,5-trisphosphate in terminating the response to inositol 1,4,5-trisphosphate and to a flash of light in Limulus ventral photoreceptors , 1997, Brain Research.

[22]  K. Contzen,et al.  Inhibition of phospholipase C by U-73122 blocks one component of the receptor current in Limulus photoreceptor , 1997, Visual Neuroscience.

[23]  J. Acharya,et al.  InsP3 Receptor Is Essential for Growth and Differentiation but Not for Vision in Drosophila , 1997, Neuron.

[24]  C. Montell,et al.  Calmodulin regulation of light adaptation and store-operated dark current in Drosophila photoreceptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Payne,et al.  Rapid Coupling of Calcium Release to Depolarization inLimulus polyphemus Ventral Photoreceptors as Revealed by Microphotolysis and Confocal Microscopy , 1997, The Journal of Neuroscience.

[26]  H. Rissler,et al.  Calcium/calmodulin-dependent protein kinase II and arrestin phosphorylation in Limulus eyes. , 1996, Journal of photochemistry and photobiology. B, Biology.

[27]  S. Chamberlain,et al.  Dawn, diacylglycerol, calcium, and protein kinase C--the retinal wrecking crew. A signal transduction cascade for rhabdom shedding in the Limulus eye. , 1996, Journal of photochemistry and photobiology. B, Biology.

[28]  L. Kass,et al.  Kinetic model for phototransduction and G-protein enzyme cascade: understanding quantal bumps during inhibition of CaM-KII or PP2B. , 1996, Journal of photochemistry and photobiology. B, Biology.

[29]  M. Dorlöchter,et al.  The Light-Stimulated Cytosolic Calcium Transient in Limulus Ventral Nerve Photoreceptors: Two Components in the Rising Phase , 1996, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[30]  A. Margulis,et al.  A novel calcium-dependent activator of retinal rod outer segment membrane guanylate cyclase. , 1995, Biochemistry.

[31]  A. Dizhoor,et al.  Cloning, Sequencing, and Expression of a 24-kDa Ca2+-binding Protein Activating Photoreceptor Guanylyl Cyclase (*) , 1995, The Journal of Biological Chemistry.

[32]  C. Zuker,et al.  Gqα protein function in vivo: Genetic dissection of its role in photoreceptor cell physiology , 1995, Neuron.

[33]  R. Payne,et al.  Light activated calcium release in Limulus ventral photoreceptors as revealed by laser confocal microscopy. , 1995, Cell calcium.

[34]  J. Lisman,et al.  Distinguishing between roles for calcium in Limulus photoreceptor excitation. , 1995, Cell calcium.

[35]  E. Johnson,et al.  Inhibitors of cyclic-GMP phosphodiesterase alter excitation of Limulus ventral photoreceptors in Ca(2+)-dependent fashion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  J Rinzel,et al.  InsP3-induced Ca2+ excitability of the endoplasmic reticulum. , 1995, Molecular biology of the cell.

[37]  R. Payne,et al.  Measurement of cytosolic Ca2+ concentration in Limulus ventral photoreceptors using fluorescent dyes , 1995, The Journal of general physiology.

[38]  R. Hardie,et al.  Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  D. Ellis,et al.  Characterization of a calcium/calmodulin-dependent protein phosphatase in the Limulus nervous tissue and its light regulation in the lateral eye , 1994, Visual Neuroscience.

[40]  P. Hillman,et al.  Facilitation of the responses to injections of inositol 1,4,5-trisphosphate analogs in Limulus ventral photoreceptors. , 1994, Biophysical journal.

[41]  P. Detwiler,et al.  Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein , 1994, Neuron.

[42]  W. Pak,et al.  Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in drosophila photoreceptors , 1994, Neuron.

[43]  P. Detwiler,et al.  Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Nagy Inhibition of the first component of the receptor current in Limulus photoreceptor. , 1994, Neuroreport.

[45]  J. Carson,et al.  Three‐dimensional organization of endoplasmic reticulum in the ventral photoreceptors of Limulus , 1994, The Journal of comparative neurology.

[46]  J. Lisman,et al.  Ca2+ is an obligatory intermediate in the excitation cascade of limulus photoreceptors , 1993, Neuron.

[47]  R. Hardie,et al.  Ca2+ limits the development of the light response in Drosophila photoreceptors , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  J. Brown,et al.  Intracellular injection of heparin and polyamines. Effects on phototransduction in limulus ventral photoreceptors , 1993, The Journal of general physiology.

[49]  P. Hillman,et al.  Fast desensitization of the response to InsP3 in Limulus ventral photoreceptors. , 1993, Biophysical journal.

[50]  R. Payne,et al.  A lingering elevation of Cai accompanies inhibition of inositol 1,4,5 trisphosphate-induced Ca release in Limulus ventral photoreceptors , 1993, The Journal of general physiology.

[51]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[52]  Bruce W. Knight,et al.  Response transfer functions of Limulus ventral photoreceptors: interpretation in terms of transduction mechanisms , 1992, Biological Cybernetics.

[53]  R. Hardie,et al.  The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors , 1992, Neuron.

[54]  J. Lisman,et al.  Rhodopsin inactivation is a modulated process in Limulus photoreceptors , 1992, Nature.

[55]  R. Payne,et al.  The latency of the response of Limulus photoreceptors to inositol trisphosphate lacks the calcium-sensitivity of that to light , 1992, Journal of Comparative Physiology A.

[56]  J. Brown,et al.  Light does not induce an increase in cyclic-GMP content of squid or Limulus photoreceptors. , 1992, Experimental eye research.

[57]  H. Stieve,et al.  The light-induced rise in cytosolic calcium starts later than the receptor current of the Limulus ventral photoreceptor , 1992, Vision Research.

[58]  C. Zuker,et al.  Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. , 1991, Science.

[59]  C. Stevens,et al.  A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization , 1991, Nature.

[60]  Roger C. Hardie,et al.  Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  J. Lisman,et al.  Light-dependent channels from excised patches of Limulus ventral photoreceptors are opened by cGMP. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Tamara M. Frank,et al.  Excitation of Limulus photoreceptors by hydrolysis-resistant analogs of cGMP and cAMP , 1991, Brain Research.

[63]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[64]  M. Charlton,et al.  Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  R. Payne,et al.  Injection of inositol trisphosphorothioate into Limulus ventral photoreceptors causes oscillations of free cytosolic calcium , 1991, The Journal of general physiology.

[66]  T. Frank,et al.  The role of the inositol phosphate cascade in visual excitation of invertebrate microvillar photoreceptors , 1991, The Journal of general physiology.

[67]  H. Stieve,et al.  Electrogenic Na(+)‐Ca2+ exchanger, the link between intra‐ and extracellular calcium in the Limulus ventral photoreceptor. , 1991, The Journal of physiology.

[68]  R. Payne,et al.  Feedback inhibition by calcium limits the release of calcium by inositol trisphosphate in Limulus ventral photoreceptors , 1990, Neuron.

[69]  J. Beavo,et al.  cGMP is tightly bound to bovine retinal rod phosphodiesterase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Gray-Keller,et al.  Evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors , 1989, The Journal of general physiology.

[71]  R. Payne,et al.  The localization of calcium release by inositol trisphosphate in Limulus photoreceptors and its control by negative feedback. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  M. Tsacopoulos,et al.  Activation of mitochondrial oxidative metabolism by calcium ions in Limulusventral photoreceptor , 1988, Nature.

[73]  D. Corson,et al.  Inositol 1,4,5-trisphosphate induces bursts of calcium release inside Limulus ventral photoreceptors , 1987, Brain Research.

[74]  R. Payne,et al.  Inositol 1,4,5 trisphosphate releases calcium from specialized sites within Limulus photoreceptors , 1987, The Journal of cell biology.

[75]  J. Lisman,et al.  Cyclic GMP is involved in the excitation of invertebrate photoreceptors , 1986, Nature.

[76]  M. Berridge,et al.  Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5 triphosphate result from a rise in intracellular calcium , 1986, The Journal of general physiology.

[77]  R. Payne,et al.  Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors , 1986, The Journal of general physiology.

[78]  J. Lisman,et al.  Ion channels activated by light in Limulus ventral photoreceptors , 1986, The Journal of general physiology.

[79]  J. Brown,et al.  Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors. , 1985, The Journal of physiology.

[80]  A. Fein,et al.  Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes , 1985, The Journal of general physiology.

[81]  Joel E. Brown,et al.  A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors. , 1984, Biochemical and biophysical research communications.

[82]  Joel E. Brown,et al.  myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors , 1984, Nature.

[83]  M. Berridge,et al.  Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate , 1984, Nature.

[84]  U. Kaupp,et al.  3',5'‐cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors. , 1984, The Journal of physiology.

[85]  J. Lisman,et al.  Single-channel currents activated by light in Limulus ventral photoreceptors , 1983, Nature.

[86]  R. Payne,et al.  Localized adaptation within the rhabdomeral lobe of Limulus ventral photoreceptors , 1983, The Journal of general physiology.

[87]  S. Chamberlain,et al.  Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure , 1982, The Journal of general physiology.

[88]  J. Schultz,et al.  Lanthanum dissociates calmodulin from the guanylate cyclase of the excitable ciliary membrane from Paramecium , 1982 .

[89]  J. Lisman,et al.  Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors , 1982, The Journal of general physiology.

[90]  J. Lisman,et al.  Voltage-dependent conductances in Limulus ventral photoreceptors , 1982, The Journal of general physiology.

[91]  D. Farber,et al.  Light-induced changes in cAMP levels in Limulus photoreceptors. , 1980, Biochemical and biophysical research communications.

[92]  J. A. Coles,et al.  Saturation of the response to light in Limulus ventral photoreceptor. , 1979, The Journal of physiology.

[93]  J. Lisman,et al.  Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors , 1977, The Journal of general physiology.

[94]  J. Lisman Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. , 1976, Biophysical journal.

[95]  J E Lisman,et al.  Light-induced changes of sensitivity in Limulus ventral photoreceptors , 1975, The Journal of general physiology.

[96]  J. Lisman,et al.  Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors , 1975, The Journal of general physiology.

[97]  J. Brown,et al.  Changes in Intracellular Free Calcium Concentration during Illumination of Invertebrate Photoreceptors , 1974, The Journal of general physiology.

[98]  M. I. Mote,et al.  Ionic Dependence of Reversal Voltage of the Light Response in Limulus Ventral Photoreceptors , 1974, The Journal of general physiology.

[99]  Joel E. Brown,et al.  The Effects of Intracellular Iontophoretic Injection of Calcium and Sodium Ions on the Light Response of Limulus Ventral Photoreceptors , 1972, The Journal of general physiology.

[100]  J. Lisman,et al.  An Electrogenic Sodium Pump in Limulus Ventral Photoreceptor Cells , 1972, The Journal of general physiology.

[101]  R Millecchia,et al.  The Ventral Photoreceptor Cells of Limulus , 1969, The Journal of general physiology.

[102]  A. Hodgkin,et al.  Changes in time scale and sensitivity in the ommatidia of Limulus , 1964, The Journal of physiology.

[103]  S. J. Ball,et al.  Structure and Ultrastructure , 2019, Coccidiosis of Man and Domestic Animals.

[104]  H. Stieve,et al.  The correlation of the receptor potential with the light induced transient increase in intracellular calcium-concentration measured by absorption change of arsenazo III injected into Limulus ventral nerve photoreceptor cell , 2004, Biophysics of structure and mechanism.

[105]  E. Z. Szuts,et al.  Metabolism of inositol 1,4,5-trisphosphate in squid photoreceptors , 2004, Journal of Comparative Physiology B.

[106]  E. Pugh,et al.  Molecular mechanisms in visual transduction , 2000 .

[107]  R. Payne,et al.  Chapter 8 Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates , 2000 .

[108]  K. G. Herman Light‐stimulated rhabdom turnover in Limulus ventral photoreceptors maintained in vitro , 1991, The Journal of comparative neurology.

[109]  R. Payne Dynamics of the Release of Calcium by Light and Inositol 1,4,5-Trisphosphate in Limulus Ventral Photoreceptors , 1990 .

[110]  Cecilia Hidalgo,et al.  Transduction in biological systems , 1990 .