Organic Tandem and Multi‐Junction Solar Cells

The emerging field of stacked layers (double‐ and even multi‐layers) in organic photovoltaic cells is reviewed. Owing to the limited absorption width of organic molecules and polymers, only a small fraction of the solar flux can be harvested by a single‐layer bulk heterojunction photovoltaic cell. Furthermore, the low charge‐carrier mobilities of most organic materials limit the thickness of the active layer. Consequently, only part of the intensity of the incident light at the absorption maximum is absorbed. A tandem or multi‐junction solar cell, consisting of multiple layers each with their specific absorption maximum and width, can overcome these limitations and can cover a larger part of the solar flux. In addition, tandem or multi‐junction solar cells offer the distinct advantage that photon energy is used more efficiently, because the voltage at which charges are collected in each sub‐cell is closer to the energy of the photons absorbed in that cell. Recent developments in both small‐molecule and polymeric photovoltaic cells are discussed, and examples of photovoltaic architectures, geometries, and materials combinations that result in tandem and multi‐junction solar cells are presented.

[1]  P. Blom,et al.  Solution-processed organic tandem solar cells with embedded optical spacers , 2007 .

[2]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[3]  Mm Martijn Wienk,et al.  Double and triple junction polymer solar cells processed from solution , 2007 .

[4]  K. Meerholz,et al.  Minimizing optical losses in bulk heterojunction polymer solar cells , 2007 .

[5]  Vishal Shrotriya,et al.  Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells , 2006 .

[6]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[7]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[8]  Raj René Janssen,et al.  Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material , 2006 .

[9]  Hans-Jürgen Prall,et al.  Enhanced spectral coverage in tandem organic solar cells , 2006 .

[10]  Valentin D. Mihailetchi,et al.  Origin of the enhanced performance in poly"3-hexylthiophene…: †6,6‡-phenyl C 61 -butyric acid methyl ester solar cells upon slow drying of the active layer , 2006 .

[11]  Valentin D. Mihailetchi,et al.  Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells , 2006 .

[12]  Mm Martijn Wienk,et al.  Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells , 2006 .

[13]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[14]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[15]  Kenji Kawano,et al.  Open circuit voltage of stacked bulk heterojunction organic solar cells , 2006 .

[16]  Gang Li,et al.  Efficient light harvesting in multiple-device stacked structure for polymer solar cells , 2006 .

[17]  Valentin D. Mihailetchi,et al.  Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells , 2005 .

[18]  P. Blom,et al.  Dynamics of exciton diffusion in poly( p -phenylene vinylene)/fullerene heterostructures , 2005 .

[19]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[20]  K. Triyana,et al.  Tandem-type organic solar cells by stacking different heterojunction materials , 2005 .

[21]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[22]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[23]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[24]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[25]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[26]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[27]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[28]  D. Gebeyehu,et al.  MIP-type organic solar cells incorporating phthalocyanine/fullerene mixed layers and doped wide-gap transport layers , 2004 .

[29]  Martin Pfeiffer,et al.  Organic p-i-n solar cells , 2004 .

[30]  N. Arnold,et al.  Modeling of optical absorption in conjugated polymer/fullerene bulk-heterojunction plastic solar cells , 2004 .

[31]  K. Triyana,et al.  Effects of Different Materials Used for Internal Floating Electrode on the Photovoltaic Properties of Tandem Type Organic Solar Cell , 2004 .

[32]  N. Arnold,et al.  Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells , 2003 .

[33]  Mats Andersson,et al.  High‐Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative , 2003 .

[34]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[35]  O. Inganäs,et al.  Synthesis and properties of alternating polyfluorene copolymers with redshifted absorption for use in solar cells , 2003 .

[36]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[37]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[38]  Stephen R. Forrest,et al.  High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters , 2002 .

[39]  J. Nelson Organic photovoltaic films , 2002 .

[40]  Jean-Michel Nunzi,et al.  Organic photovoltaic materials and devices , 2002 .

[41]  Nasser N Peyghambarian,et al.  Fabrication of bulk heterojunction plastic solar cells by screen printing , 2001 .

[42]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[43]  Mats Andersson,et al.  University of Groningen Polymer photovoltaic devices from stratified multilayers of donor-acceptor blends , 2022 .

[44]  Stephen R. Forrest,et al.  Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes , 2000 .

[45]  Christopher Hebling,et al.  Photovoltaic materials, past, present, future , 2000 .

[46]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[47]  H. Bässler,et al.  INTRINSIC PHOTOCONDUCTION IN PPV-TYPE CONJUGATED POLYMERS , 1997 .

[48]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[49]  Donal D. C. Bradley,et al.  The photovoltaic response in poly(p-phenylene vinylene) thin-film devices , 1994 .

[50]  Conwell,et al.  Excitons and the band gap in poly(phenylene vinylene). , 1993, Physical review. B, Condensed matter.

[51]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[52]  Dieter Meissner,et al.  Organic Solar Cells , 1991 .

[53]  Masahiro Hiramoto,et al.  Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell , 1990 .

[54]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[55]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[56]  G. A. Chamberlain,et al.  ORGANIC SOLAR CELLS: A REVIEW , 1983 .

[57]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[58]  P. Magnante,et al.  Electroluminescence in Organic Crystals , 1963 .

[59]  R. Kepler Charge Carrier Production and Mobility in Anthracene Crystals , 1960 .

[60]  O. H. Leblanc Hole and Electron Drift Mobilities in Anthracene , 1960 .

[61]  H. Pick,et al.  Elektronenleitfähigkeit von Anthracen-Einkristallen , 1953 .