{1 0 0}-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties

Pb(Zr-x, Ti1-x)O-3 (PZT) piezoelectric thin films are of major interest in MEMS technology for their ability to provide electro-mechanical coupling. In this work, the effective transverse piezoelectric coefficient e(31,f) of sol-gel processed films was investigated as a function of composition, film texture and film thickness. Dense, textured and crack-free PZT films have been obtained on silicon substrates up to a thickness of 4 mum. Crystallization anneals have been performed for every 0.25 mum. Nucleation on the previous perovskite layer combined with directional growth leads to a gradient of the compositional parameter x of +/-20% (at x = 0.53 average composition). Best properties have been achieved with {100}-textured film of x = 0.53 composition. Large remanent e(31,f) values of -11 to -12 C/m(2) have been obtained in the whole thickness range of 1-4 mum. These values are superior to values of undoped bulk ceramics, but smaller than in current, optimized (doped) bulk PZT. (C) 2003 Elsevier Science B.V. All rights reserved.

[1]  Johannes G.E. Gardeniers,et al.  Direct measurement of piezoelectric properties of Sol-Gel PZT films , 1998 .

[2]  Paul Muralt,et al.  Ferroelectric thin films for micro-sensors and actuators: a review , 2000 .

[3]  Nava Setter,et al.  Interferometric measurements of electric field-induced displacements in piezoelectric thin films , 1996 .

[4]  Fabrication and characterization of PZT thin films for micromotors , 1995 .

[5]  Paul Muralt,et al.  Piezoelectric thin films for MEMS , 1997, Applied Physics Letters.

[6]  P. Muralt,et al.  In-plane piezoelectric coefficient of PZT thin films as a function of composition , 1999 .

[7]  K. Yoon,et al.  Effect of orientation on the dielectric and piezoelectric properties of 0.2Pb(Mg1/3Nb2/3)O3–0.8Pb(Zr0.5Ti0.5)O3 thin films , 2001 .

[8]  L. E. Cross,et al.  Piezoelectric micromotors for microrobots , 1992 .

[9]  J. Mackenzie,et al.  Crystallization Kinetics Of Metallo-Organics Derived Pzt Thin Film , 1990 .

[10]  P. Muralt,et al.  Piezoelectric and dielectric properties of sputter deposited (111), (100) and random-textured Pb(ZrxTi1-x)O3 (PZT) thin films , 1999 .

[11]  S. Wada,et al.  Preparation of PZT Thick Films by an Interfacial Polymerization Method , 2003 .

[12]  N. Setter,et al.  Orientation and Composition Dependence of Piezoelectric-Dielectric Properties of Sputtered Pb(Zr x ,Ti 1-x )O 3 Thin Films , 1999 .

[13]  Paul Muralt,et al.  Fabrication and characterization of PZT thin-film vibrators for micromotors , 1995 .

[14]  G. B. Harris X. Quantitative measurement of preferred orientation in rolled uranium bars , 1952 .

[15]  K.K. Li,et al.  Micromachined high frequency ferroelectric sonar transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Chengkuo Lee,et al.  Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy , 1997 .

[17]  S. D. Collins,et al.  Microfabricated Lamb wave device based on PZT sol-gel thin film for mechanical transport of solid particles and liquids , 1997 .

[18]  William Crane Jun. XXIV. Observations on the doctrines of definite proportions in chemical affinity , 1814 .

[19]  Paul Muralt,et al.  Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions , 1996 .

[20]  Paul Muralt,et al.  Measurement of the effective transverse piezoelectric coefficient e31,f of AlN and Pb(Zrx,Ti1−x)O3 thin films , 1999 .

[21]  Paul Muralt,et al.  Pb(Zr,Ti)O3 thin films by in-situ reactive sputtering on micromachined membranes for micromechanical applications , 1995 .

[22]  Richard M. White,et al.  Piezoelectric cantilever acoustic transducer , 1998 .

[23]  Paul Muralt,et al.  Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhesion Layers , 1998 .

[24]  Stewart Sherrit,et al.  Complete characterization of the piezoelectric, dielectric, and elastic properties of Motorola PZT 3203 HD, including losses and dispersion , 1997, Medical Imaging.

[25]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system , 1989 .

[26]  Kenji Uchino,et al.  Crystal Orientation Dependence of Piezoelectric Properties in Lead Zirconate Titanate: Theoretical Expectation for Thin Films , 1997 .

[27]  L. E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations , 1989 .

[28]  Leslie E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients , 1989 .

[29]  Paul Muralt,et al.  Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding , 1998 .

[30]  L. Hench,et al.  Effect of formamide additive on the chemistry of silica sol-gels: Part I: NMR of silica hydrolysis , 1986 .

[31]  K. Uchino,et al.  Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary , 1998 .

[32]  P. Muralt,et al.  PZT thin films for microsensors and actuators: Where do we stand? , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[33]  J. F. Shepard,et al.  The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films , 1998 .

[34]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[35]  D. Wouters,et al.  Nucleation and orientation of sol-gel pzt-films on pt electrodes , 1997 .